PRELIMINARY EXAMINATION
 ALGEBRA I

Fall 2005
September $14^{\text {th }}, 2005$

Duration: 3 hours

1. Determine all groups with exactly three distinct subgroups.
2. Let A be an abelian group denoted additively. Let ϕ be an endomorphism of A. Show that if ϕ is nilpotent, then $1+\phi$ is an automorphism of A.
Hint: Consider the factorization of $1+\phi^{n}$ (with n odd) in the ring End A. Note that 1 means the identity map of A.
3. A ring R is called radical if for every $x \in R$, there exists $y \in R$ such that $x+y+x y=0$.
a) Let R be a ring. If every element of R is nilpotent, then show that R is radical.
b) Show that $R=\left\{\left.\frac{2 x}{2 y+1} \right\rvert\, x, y \in \mathbb{Z}\right.$ such that $\left.(2 x, 2 y+1)=1\right\}$ is a radical ring.
c) Prove or disprove: In a radical ring every element is nilpotent.
4. Let R be a commutative ring with identity 1 . A subset S of R is called a multiplicative set if it is closed under multiplication, contains 1 , and does not contain the zero element.
a) Prove that an ideal I of R is prime if and only if there is a multiplicative set S such that I is maximal among ideals disjoint from S.
b) Prove that the set of all nilpotent elements of R equals the intersection of all the prime ideals of R.
Hint: If s is not nilpotent, then $\left\{1, s, s^{2}, \cdots\right\}$ is a multiplicative set.
