METU Mathematics Department
 Graduate Preliminary Examination

Algebra I, Fall 2014

1. Let A be an abelian p-group of exponent p^{m}. Suppose that B is a subgroup of A of order p^{m} and both B and A / B are cyclic. Show that there is a subgroup C of A such that $A \cong B \oplus C$ and $B \cap C=\{0\}$.
2. Let $p>q$ be primes.
(a) Prove that a group of order $p q$ is not simple.
(b) Show that there is exactly one group of order $p q$ if $p-1$ is not divisible by q.
(c) Construct a nonabelian group of order $p q$ if $p-1$ is divisible by q.
3. Let R be a commutative ring with identity and let G be a finite group.
(a) Show that the augmentation map from the group ring $R[G]$ to R given by the formula $f\left(\sum c_{g} g\right)=\sum c_{g}$ is a ring homomorphism.
(b) Show that the augmentation ideal, i.e. the kernel of the augmentation homomorphism, is generated by $\{g-1 \mid g \in G\}$.
(c) If G is cyclic with generator g_{0}, then show that the augmentation ideal is principal with generator $g_{0}-1$.
4. Let R be a ring with identity and $f \in R[[x]]$ be a formal power series with coefficients from R.
(a) Give a sufficient and necessary condition for f to be a unit in the ring $R[[x]]$. Prove your statement.
(b) Classify all ideals of $\mathbb{F}[[x]]$ if \mathbb{F} is a field.
