METU Mathematics Department Graduate Preliminary Examination Algebra I, Fall 2014

- 1. Let A be an abelian p-group of exponent p^m . Suppose that B is a subgroup of A of order p^m and both B and A/B are cyclic. Show that there is a subgroup C of A such that $A \cong B \oplus C$ and $B \cap C = \{0\}$.
- 2. Let p > q be primes.
 - (a) Prove that a group of order pq is not simple.
 - (b) Show that there is exactly one group of order pq if p-1 is not divisible by q.
 - (c) Construct a nonabelian group of order pq if p-1 is divisible by q.
- 3. Let R be a commutative ring with identity and let G be a finite group.
 - (a) Show that the augmentation map from the group ring R[G] to R given by the formula $f(\sum c_g g) = \sum c_g$ is a ring homomorphism.
 - (b) Show that the augmentation ideal, i.e. the kernel of the augmentation homomorphism, is generated by $\{g 1 | g \in G\}$.
 - (c) If G is cyclic with generator g_0 , then show that the augmentation ideal is principal with generator $g_0 1$.
- 4. Let R be a ring with identity and $f \in R[[x]]$ be a formal power series with coefficients from R.
 - (a) Give a sufficient and necessary condition for f to be a unit in the ring R[[x]]. Prove your statement.
 - (b) Classify all ideals of $\mathbb{F}[[x]]$ if \mathbb{F} is a field.