Graduate Preliminary Exam, Algebra I Fall 2019 18.09.2019 10:00										
Name	Name : : nt No :				Signature :					
5 QUESTIONS							TOTAL 100 POINTS			
1 2	3	4	5		Duration	3 hours				

M E T U Department of Mathematics

- (1) (20 pts) Let G be a finite group and let p be the smallest prime dividing the order of G. If H is a subgroup of G of index p, show that H is a normal subgroup of G. (Hint: Consider the action of G on the set of left cosets of H).
- (2) (20 pts) Let G be a finite group such that for all $n \ge 1$, G has at most one subgroup of order n. Show that G is cyclic.
- (3) Recall the following: If G is a group, a subgroup $M \leq G$ is a maximal subgroup if for any subgroup $N \leq G$, $M \leq N \leq G$ implies N = M or N = G. (i.e., M is a maximal element in the poset of proper subgroups of G).
 - (a) (10 pts) Using Zorn's Lemma, prove the following: If G is a finitely generated group then G has a maximal subgroup.
 - (b) (10 pts) Show that the group $(\mathbb{Q}, +)$ has no maximal subgroups.
- (4) Let R be an integral domain. An element $s \in R$ is called *special* if
 - s is non-zero and non-unit and
 - for any $a \in R$ there exists $q, r \in R$ such that a = qs + r where r = 0 or r is a unit.
 - (a) (7 pts) Show that if $s \in R$ is special then (s) is a maximal ideal of R.
 - (b) (7 pts) Show that every polynomial in $\mathbb{Q}[x]$ of degree 1 is special.
 - (c) (6 pts) Show that $\mathbb{Z}[x]$ has no special elements.
- (5) Let F be a field and let $R = \{a_n x^n + \ldots + a_1 x + a_0 \in F[x] \mid a_1 = 0\}$. Clearly R is a subring of F[x].
 - (a) (10 pts) Is R a unique factorization domain? Explain.
 - (b) (10 pts) Prove or disprove: If S is a Euclidean domain, then every subring of S is also a Euclidean domain.