Q1 (20 pts) Suppose G is a finite group and f is an automorphism of G fixes more than half of the elements of G. Show that f is the identity automorphism.

Q2 (20 pts) Prove that if an infinite group G contains a proper subgroup of finite index, then G contains a proper normal subgroup of finite index.

Q3 (20 pts) Show that any group of order 154 is solvable.

Q4 (20 pts) Let K be a field. Prove that the polynomial ring $K[x]$ has infinitely many maximal ideals.

Q5 (20 pts) Suppose R is a ring with identity 1_R. An element $e \in R$ is called idempotent if $e^2 = e$. Assume e is an idempotent in R and $er = re$ for all $r \in R$.

(a) Show that Re and $R(1_R - e)$ are two-sided ideals R.

(b) Show that $R \simeq Re \times R(1_R - e)$.

(c) Show that e and $1_R - e$ are identities for the subrings Re and $R(1_R - e)$ respectively.