METU MATHEMATICS DEPARTMENT GRADUATE PRELIMINARY EXAMINATION ALGEBRA I, FEBRUARY 2015

FEBRUARY 9, 2015

1.a) Let G denote the free product of the group with two elements with itself:

$$
G=\mathbb{Z}_{2} * \mathbb{Z}_{2}=<a, b \mid a^{2}, b^{2}>
$$

Show that the subgroup generated by the element $a b$,

$$
N=<a b>\triangleleft G
$$

is an infinite cyclic group and it is normal with index two.
b) Let $H=\langle a\rangle \leqslant G$. Describe the action of H on N by conjugation. Show that $G=N H$ with $N \cap H=\{1\}$.
c) Conclude that G is isomorphic to the semidirect product $N \rtimes H$ with the action described in part (b).
2.a) Show that any finite group of order 65 is cyclic.
b) Show that any finite group of order 130 has a unique subgroup of order 13 .
c) Show that any finite group of order 130 has a subgroup of order 65 .
d) Show that up to isomorphism there are only two groups of order 130. Describe them.
3.a) For any integer $n>1$ consider the ring $\mathbb{Z} / n \mathbb{Z} \simeq \mathbb{Z}_{n}$. Show that any ideal $I \subseteq \mathbb{Z}_{n}$ is principal. (Note that the ring \mathbb{Z}_{n} is not necessarily a PID.)
b) Let R be any ring so that there is an onto ring homomorphism $f: \mathbb{Z}_{n} \rightarrow R$. Use part (a) to show that R is isomorphic to some \mathbb{Z}_{m}, where $m \mid n$.
c) Let $g: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m}$ be an injective ring homomorphism and $g(1)=k \in \mathbb{Z}_{m}$ (we abuse the notation and let k denote its residue class in \mathbb{Z}_{m}). Show that k is an element of order n in the additive group $\mathbb{Z}_{m}, m \mid n k$ and $m \mid k(k-1)$.
d) Let m, n, k be integers with $m, n>1,0<k<m$ so that $m \mid n k$, $m \mid k(k-1)$ and $k \in \mathbb{Z}_{m}$ has order n. Show that the map $\phi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m}$ defined by $\phi(r)=k r, \forall r \in \mathbb{Z}_{n}$, is a well defined injective ring homomorphism.
e) List all subrings of \mathbb{Z}_{30}. Find a nontrivial ring homomorphism $\phi: \mathbb{Z}_{10} \rightarrow \mathbb{Z}_{30}$. Is there any other?
4.a) Let $N: \mathbb{Z}[\sqrt{5}] \rightarrow \mathbb{Z}$ be defined by the rule

$$
N(a+b \sqrt{5})=(a+b \sqrt{5})(a-b \sqrt{5})=a^{2}-5 b^{2}
$$

Show that $N((a+b \sqrt{5})(c+d \sqrt{5}))=N(a+b \sqrt{5}) N(c+d \sqrt{5})$, for all $(a+b \sqrt{5})$ and $(c+d \sqrt{5}) \in \mathbb{Z}[\sqrt{5}]$.
b) Use part (a) to show that if $|N(a+b \sqrt{5})|=p$ is a prime integer then $a+b \sqrt{5}$ is an irreducible element in $\mathbb{Z}[\sqrt{5}]$.

