METU Mathematics Department Graduate Preliminary Examination Algebra I, February 2018

- 1. Prove that a group of order 160 is not simple.
- 2. Let the group $G = S \times T$ be the direct product of subgroups S and T. Let H be a subgroup of G such that SH = G = TH.
 - (a) Prove that $S \cap H$ and $T \cap H$ are normal subgroups of G.
 - (b) If $S \cap H = 1 = T \cap H$ then prove that S and T are isomorphic.
 - (c) If $S \cap H = 1 = T \cap H$ and H is normal in G, show that G is abelian.
- 3. Suppose that a is a non-zero non unit element of an integral domain R.
 - (a) Show that the ideal (a, x) in R[x] is not principal.
 - (b) Use part (a) to show that if F is a field, then F[x, y] is not a principal ideal domain.
- 4. (a) Let R be a commutative ring with unity and A be a proper ideal of R. Show that R/A is a commutative ring with unity.
 - (b) In $\mathbb{Z} \oplus \mathbb{Z}$, let $I = \{(a, 0) \mid a \in \mathbb{Z}\}$. Show that I is a prime ideal but not a maximal ideal.
 - (c) Prove that if R is a principal ideal domain then any nonzero prime ideal is maximal.