\mathbf{M}	$\mathbf{E} \mathbf{T}$	\mathbf{U}	Department of Mathematics	
--------------	-------------------------	--------------	---------------------------	--

ALGEBRA I PRELIMINARY EXAM FEBRUARY 2024						
F U L L N A M E (write in CAPITAL letters)	STUDENT	I D	DURATION			
			180 MINUTES			
4 QUESTIONS TOTAL 100 POINTS						

1. (6+7+7 Points) A group G is a "nice group" if

1) G is abelian,

2) For every subgroup $H \leq G$ there is a subgroup $K \leq G$ such that $G = H \oplus K$.

a) If G is a nice group, show that every subgroup of G is nice.

b) If G is a nice group show that every element of G has finite order.

c) If G is a nice group and p is a prime, show that G has no elements of order p^2 .

2. (10+10 Points) Suppose a finite group G acts on a finite set X. For $g \in G$ let $Fix(g) = \{x \in X \mid g.x = x\}$. Burnside's Lemma states the following:

The number of orbits of the action $= \frac{1}{|G|} \sum_{g \in G} |Fix(g)|$

(You do not need to prove Burnside's lemma)

a) Prove that if G acts transitively on X and |X| > 1, then there is $g \in G$ such that Fix(g) is empty.

b) Let G be a finite group and H be a proper subgroup of G. Show that G is not a union of conjugates of H.

3. (10+10 Points) Consider \mathbb{Q} and \mathbb{Z} as additive groups.

a) Find all group homomorphisms from \mathbb{Z} to \mathbb{Q} .

b) Find all group homomorphisms from \mathbb{Q} to \mathbb{Z} .

4. (10+10 Points) Let R be a ring with identity. Show that for an element $r \in R$, r belongs to every maximal ideal of R if and only if 1 - rx is a unit for every $x \in R$.

5. (10 Points) Let R be commutative ring such that for any ideals $I, J \subseteq R$, either $I \subseteq J$ or $J \subseteq I$. Show that a finitely generated ideal of R must be principal.

6. (10 Points)Let R be a commutative ring with identity and let U be maximal among non-principal ideals of R. Show that U is a prime ideal.