METU Mathematics Department Graduate Preliminary Examination Algebra I, February 2025

- 1. Suppose that H is a subgroup of G with finite index n. Prove that there is a normal subgroup K of G with $K \leq H$ and $[G:K] \leq n!$.
- 2. Let G be a group of order 105.
 - (a) Show that G is not simple.
 - (b) Show that G is solvable.
- 3. Let H be a subgroup of a finite Abelian group A. Show that there is a subgroup K of A such that $A/K \cong H$.
- 4. Let R be a commutative ring with identity 1_R . If R[x] is a principal ideal domain then show that R is a field.
- 5. Let $R = \mathbb{Z}[\sqrt{-5}]$, a subring of \mathbb{C} . Consider the ideals $I = (3, 1 + \sqrt{-5})$ and $J = I^2$.
 - (a) Show that I is not a principal ideal.
 - (b) Show that J is a principal ideal and find a generator.
 - (c) Show that |R/J| = 9. Is the quotient ring R/J isomorphic to one of the rings $R_1 = \mathbb{Z}_9$ or $R_2 = \mathbb{Z}_3 \times \mathbb{Z}_3$? Justify your answer.