METU - Department of Mathematics Graduate Preliminary Exam

Algebra II

February, 2009

Duration: 180 min.

1. Let α be the real positive 16th root of 3 and consider the chain of intermediate fields

$$\mathbb{Q} \subseteq \mathbb{Q}(\alpha^8) \subseteq \mathbb{Q}(\alpha^4) \subseteq (\alpha^2) \subseteq \mathbb{Q}(\alpha) = F.$$

- a) Compute the degrees of these five intermediate fields over \mathbb{Q} and conclude that these fields are all distinct.
- b) Show that every intermediate field between \mathbb{Q} and F is one of the above. (Hint: If $\mathbb{Q} \subseteq K \subseteq F$, consider the constant term of the minimal polynomial of α over K).
 - **2.** Let p be a prime number and let $w_p = e^{2\pi i/p}$ be the pth root of 1 in \mathbb{C} .
 - a) Show that Gal $(\mathbb{Q}(w_p)/\mathbb{Q})$ is isomorphic to the multiplicative group \mathbb{Z}_p^* .
- b) Let F be a field containing w_p and let a be an element of F which is not the pth power of any element of F. Show that if E is the splitting field of the polynomial $x^p a \in F[x]$, then Gal (E/F) is isomorphic to the additive group \mathbb{Z}_p .
 - c) If K is the splitting field of $x^p 2 \in \mathbb{Q}[x]$, show that $|K:\mathbb{Q}| = p(p-1)$.
- **3.** Let R be a ring. Recall that an R-module P is called projective if for every R-module epimorphism $f:A\to B$ and every R-module homomorphism $g:P\to B$, there exists an R-module homomorphism $h:P\to A$ such that fh=g.
- a) Let P be an R-module for a ring R. Show that if there is a free R-module F and an R-module K such that $F \cong K \oplus P$, then P is projective. (You may use the fact that every free module is projective).
- b) Let R be a commutative ring. Suppose that R-modules P and Q are projective. Show that $P \otimes_R Q$ is projective.
- **4.** Let R be a ring with unity and suppose that R can be written as the sum $R = \sum_{i=1}^{m} I_i$, where I_i are finitely many (two-sided) ideals of R satisfying $I_i \cap I_j = 0$ whenever $i \neq j$.
- a) Prove that, for every simple right R-module M, there exists a unique subscript k such that $MI_k \neq 0$
- b) Show that if $i \neq j$, then every right R-module homomorphism $\theta: I_i \to I_j$ is the zero map.