GRADUATE PRELIMINARY EXAMINATION

ALGEBRA II
 Spring 2010

1. Let R be a commutative ring with identity 1 and let Q be an injective R-module.

If $L \xrightarrow{\alpha} M \xrightarrow{\beta} N$ is an exact sequence of R-modules and R-homomorphisms with the property that $f \circ \alpha=0$ for an R-homomorphism $f: M \longrightarrow Q$, show that there is an R-homomorphism $g: N \longrightarrow Q$ with $g \circ \beta=f$.
2. A nonzero left module M (over some ring) is called

- simple, if M has no proper nonzero submodule;
- complemented, if every submodule of M is a direct summand of M (that is, for every submodule A of M, there is a submodule B of M such that $M=A \oplus B$, which means $M=A+B$ and $A \cap B=0)$.
(a) Give an example of a simple module.
(b) Give an example of a complemented module that is not simple.
(c) Show that every nonzero submodule of a complemented module is complemented.
(d) Show that every complemented module has a simple submodule.

3. Suppose K, L, and M are fields, and $K \subseteq L \subseteq M$. Prove or disprove the following statements.
(a) If M / L and L / K are normal, then so is M / K.
(b) If M / K is normal, then so is M / L.
(c) If M / L is normal, then so is M / K.
(d) $(K,+) \not \approx\left(K^{*}, \cdot\right)$.
4. Consider the polynomial $f(x)=x^{5}-6 x+3 \in \mathbb{Q}[x]$
(a) Using Eisenstein's criterion, prove that f is irreducible over \mathbb{Q}.
(b) Let E be the splitting field of f. Show that there exists $\sigma \in G a l(E / Q)$ of order 5 .
(c) Prove the following:

There exists $\tau \in G a l(E / Q)$ of order 2 and hence $G a l(E / Q) \cong S_{5}$.
(Hint: You may assume that $f(x)$ has exactly one pair of complex conjugate roots.)
(d) Is $f(x)$ solvable by radicals over \mathbb{Q} ? Why?

