METU - Mathematics Department Graduate Preliminary Exam-Fall 2007

Complex Analysis

1. Evaluate $\int_0^\infty e^{-x^2} \cos(x^2) dx$ using complex integration along the given contour.

(Hint:
$$\int_0^\infty e^{-u^2} du = \frac{\sqrt{\pi}}{2}$$
).

- 2. Let $f : \mathbb{C}^* \to \mathbb{C}$ be an analytic map such that for all $z \in \mathbb{C}$ the set $f^{-1}(z)$ is finite (if not empty). Show that
 - (i) z = 0 is not an essential singularity of f.
 - (ii) If f is bounded in some deleted neighborhood of 0, then f is a polynomial.
- 3. Recall that the analytic automorphisms of the unit disk D are given by linear fractional transformations of the form $z \mapsto e^{i\theta} \frac{z \alpha}{1 \overline{\alpha}z}$ for some $\theta \in [0, 2\pi)$ and $\alpha \in D$.

a) Using this fact prove that the analytic automorphisms of the upper halfplane \mathcal{H} are given by (special) linear fractional transformations.

b) Show that the map $\Omega = \{z : 0 < \arg(z) < \frac{\pi}{2}\} \to \mathcal{H}, \ z \mapsto z^2$ is an analytic isomorphism.

Deduce that if $g \in Aut(\Omega)$, then there exists a linear fractional transformation T such that $g(z) = \sqrt{T(z^2)}$ for a suitable branch of the square root function (which branch ?).

c) Show that there exists no linear fractional transformation which maps Ω isomorphically onto D.

4. Let $f : \mathbb{C} \to \mathbb{C}$ be a rational function such that |f(z)| = 1 if |z| = 1. Prove that there exist $c \in \mathbb{C}$, $c \neq 0$ and $\alpha_1, ..., \alpha_n \in \mathbb{C}$, $|\alpha_i| \neq 0, 1$ and $m \in \mathbb{Z}$ such that

$$f(z) = cz^m \prod_{1}^{n} \frac{z - \alpha_i}{1 - \overline{\alpha}_i z}.$$