Complex Analysis

PRELIMINARY EXAMINATION

Monday, 15th September 2014. Four questions, three hours.

$$
\begin{gathered}
\mathbf{1} \\
{[12+7+6]}
\end{gathered}
$$

(A) Prove that the real and imaginary parts of $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by

$$
f(z)=\left\{\begin{array}{ccc}
\exp \left(-\frac{1}{z^{4}}\right) & \text { for } & z \neq 0 \\
0 & \text { for } & z=0
\end{array}\right.
$$

have partial derivatives that satisfy the Cauchy-Riemann equations at any $z \in \mathbb{C}$.
(B) Is $f(z)$ differentiable as a function of z at $z=0$?
(C) Give conditions under which the Cauchy-Riemann equations are sufficient for differentiability with respect to z. Indicate why they are not applicable in this case.

$$
\begin{gathered}
\mathbf{2} \\
{[(7+7)+11]}
\end{gathered}
$$

(A) Given an entire function f evaluate

$$
\int_{\Gamma_{R}} \frac{f(z)}{(z-a)(z-b)} d z
$$

for any $a, b \in \mathbb{C}$ where $R>|a|,|b|$ and the contour Γ_{R} is the counterclockwise traversed circle of center $0 \in \mathbb{C}$ and radius R. Use this relation to prove the Liouville theorem to the effect that a bounded entire function reduces to a constant.
(B) Let h be an entire function that h has simple zeros, only. If g is an entire function which satisfies

$$
|g(z)| \leq|h(z)|
$$

for all $z \in \mathbb{C}$, prove that $g(z)=\operatorname{ch}(z)$ for some constant $c \in \mathbb{C}$ with $|c| \leq 1$.

$$
[15+10]
$$

(A) Prove that the polynomial

$$
p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}
$$

where $a_{0}, a_{1}, a_{2}, \cdots, a_{n} \in \mathbb{R}$ with

$$
a_{0} \geq a_{1} \geq a_{2} \geq \cdots \geq a_{n}>0
$$

has no roots in the open disc

$$
\Delta=\{z \in \mathbb{C}| | z \mid<1\}
$$

(Hint: Consider the polynomials $(z-1) p(z)$ and $a_{n} z^{n+1}-a_{0}$ on the boundary of Δ.)
(B) Prove that the polynomial

$$
q(z)=b_{0}+b_{1} z+b_{2} z^{2}+\cdots+b_{n} z^{n}
$$

where $b_{0}, b_{1}, b_{2}, \cdots, b_{n} \in \mathbb{R}$ with

$$
b_{n} \geq \cdots \geq b_{1} \geq b_{0}>0
$$

has exactly n roots (counted with multiplicities) in the closure of Δ.

$$
[8+17]
$$

Use your own choice of branches of the squareroot and the logarithmic function to prove by calculus of residues, or otherwise, that

$$
\int_{0}^{\infty} \frac{\sqrt{x} \log (x)}{x^{2}+1} d x=\frac{\pi^{2}}{2 \sqrt{2}} .
$$

