Complex Analysis Preliminary Exam September 2018

1. (a) (10pts) Find the number of zeros of $8 z^{5}+5 z^{2}+2$ in the unit disk in \mathbb{C}.
(b) (15 pts) Evaluate

$$
\int_{|z|=1} \frac{3 z^{4}+2 z+1}{8 z^{5}+5 z^{2}+2}
$$

2. Does there exist a bounded analytic function on D which satisfies

$$
f\left(\frac{1}{n}\right)=\frac{n+3}{n+2}
$$

where
(a) (10pts) $D=\left\{z \in \mathbb{C}: 0<|z|<\frac{1}{3}\right\}$.
(b) (15pts) $D=\{z \in \mathbb{C}: 0<|z|<1\}$.
3. Let $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ be the unit disk in \mathbb{C}.
(a) (10pts) Find a conformal map from $\{z \in \mathbb{C}: \operatorname{Im} z>-1\}$ onto \mathbb{D}.
(b) (15pts) Show that if f is analytic on $\mathbb{D}, f(0)=0$ and $\operatorname{Im} f(z)>-1$ for all $z \in \mathbb{D}$ then $|f(z)| \leq \frac{2|z|}{1-|z|}$.
4. A function f is called doubly-periodic if for all $z \in \mathbb{C}, f(z)=f(z+a)=f(z+b)$ for some $a \neq b \in \mathbb{C}$.
(a) (5pts) Show that any doubly periodic entire function must be constant.
(b) (10pts) Let P be the parallelogram with edges $(0, a)$ and $(0, b)$. Show that if f is a doubly periodic meromorphic function in \mathbb{C} which has no zeros on the boundary of P then the number of zeros of f in P is equal to the number of poles of f in P.
(c) $(10 \mathrm{pts})$ Does there exist a doubly periodic meromorphic function f in \mathbb{C} such that f has no poles on the boundary of P and it has only one single pole (multiplicity one) inside P ?

