Complex Analysis Preliminary Exam September 2018

(a) (10pts) Find the number of zeros of 8z⁵ + 5z² + 2 in the unit disk in C.
(b) (15 pts) Evaluate

$$\int_{|z|=1} \frac{3z^4 + 2z + 1}{8z^5 + 5z^2 + 2}$$

2. Does there exist a bounded analytic function on D which satisfies

$$f\left(\frac{1}{n}\right) = \frac{n+3}{n+2}$$

where

- (a) (10pts) $D = \{z \in \mathbb{C} : 0 < |z| < \frac{1}{3}\}.$
- (b) (15pts) $D = \{ z \in \mathbb{C} : 0 < |z| < 1 \}.$
- 3. Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disk in \mathbb{C} .
 - (a) (10pts) Find a conformal map from $\{z \in \mathbb{C} : Im \ z > -1\}$ onto \mathbb{D} .
 - (b) (15pts) Show that if f is analytic on \mathbb{D} , f(0) = 0 and Im f(z) > -1 for all $z \in \mathbb{D}$ then $|f(z)| \leq \frac{2|z|}{1-|z|}$.
- 4. A function f is called doubly-periodic if for all $z \in \mathbb{C}$, f(z) = f(z+a) = f(z+b) for some $a \neq b \in \mathbb{C}$.
 - (a) (5pts) Show that any doubly periodic entire function must be constant.
 - (b) (10pts) Let P be the parallelogram with edges (0, a) and (0, b). Show that if f is a doubly periodic meromorphic function in \mathbb{C} which has no zeros on the boundary of P then the number of zeros of f in P is equal to the number of poles of f in P.
 - (c) (10pts) Does there exist a doubly periodic meromorphic function f in \mathbb{C} such that f has no poles on the boundary of P and it has only one single pole (multiplicity one) inside P?