GRADUATE PRELIMINARY EXAMINATION ANALYSIS 2 (Complex Analysis)

February 17th, 2005

- 1. Let G be the group of analytic automorphisms $g: D(0:1) \to D(0:1)$ of the open unit disc D(0:1) onto itself.
 - (a) For any two elements z_1, z_2 in D(0:1), explicitly construct $g \in G$ such that $g(z_1) = z_2$.
 - (b) Characterize the elements of $G_0 = \{g \in G : g(0) = 0\}$.
 - (c) Determine all holomorphic functions $f: D(0:1) \to \mathbb{C}$ which are G-invariant, i.e. $f(g(z)) = f(z) \forall g \in G \ , z \in D(0:1).$
 - (d) Determine all holomorphic functions $f: D(0:1) \to \mathbb{C}$ which are G_0 -invariant.
- 2. Let f be an entire function which satisfies

$$f(z) + f(z+1) = f(2z) \quad \forall z \in \mathbb{C}.$$

(a) Using induction on n show that

$$f(2^{n}z) = \sum_{k=0}^{2^{n}-1} f(z + \frac{k}{2^{n-1}}) \ \forall n \in \mathbb{Z}, n \ge 1$$

(b) Let D(0,r) denote the open unit disc with center at $0 \in \mathbb{C}$ and radius r > 0. Using the Cauchy Integral Formula over the counterclockwise oriented circle of radius 2^n centered at 0 or otherwise, show that for any $a \in D(0,1)$ and $n \in \mathbb{Z}, n \ge 1$

$$|f''(a)| \le \frac{M}{2^{n-4}}$$

where $M = \sup_{z \in D(0:3)} |f(z)|$.

(c) Prove that f(z) = Az + B for some $A, B \in \mathbb{C}$ with A+B=0.

3. Consider the series

$$f(z) = \sum_{n=0}^{\infty} z^{n!}.$$

- (a) Show that f(z) defines an analytic function in the open unit disc D(0,1).
- (b) Verify that for all $k \ge 1$, and for all k-th roots of unity w, (i.e. $w^k = 1$), $f(w) = \infty$ holds.
- (c) Show that in any arc on the unit circle |z| = 1, there are N-th roots of unity for infinitely many N. (*Hint: Use the map* $[0,1] \rightarrow \{z : |z| = 1\}, t \mapsto e^{2\pi i t}$ to work in [0,1]).
- (d) Using the results of b) and c) show that f(z) cannot be continued analytically to any domain Ω which properly contains D(0,1).
- 4. Let Ω be a convex bounded domain and γ a closed smooth curve in Ω . Suppose that f and g are analytic functions on $\overline{\Omega}$, f zero free on γ .
 - (a) Compute the residue of $\frac{g \cdot f'}{f}$ at a zero of f in Ω .
 - (b) Compute $\frac{1}{2\pi i} \oint_{\gamma} \frac{g(z)f'(z)}{f(z)} dz$.