GRADUATE PRELIMINARY EXAMINATION ANALYSIS 2 (Complex Analysis)

February 17th, 2005

1. Let G be the group of analytic automorphisms $g: D(0: 1) \rightarrow D(0: 1)$ of the open unit disc $\mathrm{D}(0: 1)$ onto itself.
(a) For any two elements z_{1}, z_{2} in $\mathrm{D}(0: 1)$, explicitly construct $g \in G$ such that $g\left(z_{1}\right)=z_{2}$.
(b) Characterize the elements of $G_{0}=\{g \in G: g(0)=0\}$.
(c) Determine all holomorphic functions $f: D(0: 1) \rightarrow \mathbb{C}$ which are G-invariant, i.e. $f(g(z))=f(z) \forall g \in G, z \in D(0: 1)$.
(d) Determine all holomorphic functions $f: D(0: 1) \rightarrow \mathbb{C}$ which are G_{0}-invariant.
2. Let f be an entire function which satisfies

$$
f(z)+f(z+1)=f(2 z) \forall z \in \mathbb{C}
$$

(a) Using induction on n show that

$$
f\left(2^{n} z\right)=\sum_{k=0}^{2^{n}-1} f\left(z+\frac{k}{2^{n-1}}\right) \forall n \in \mathbb{Z}, n \geq 1
$$

(b) Let $\mathrm{D}(0, \mathrm{r})$ denote the open unit disc with center at $0 \in \mathbb{C}$ and radius $r>0$. Using the Cauchy Integral Formula over the counterclockwise oriented circle of radius 2^{n} centered at 0 or otherwise, show that for any $a \in D(0,1)$ and $n \in \mathbb{Z}, n \geq 1$

$$
\left|f^{\prime \prime}(a)\right| \leq \frac{M}{2^{n-4}}
$$

where $M=\sup _{z \in D(0: 3)}|f(z)|$.
(c) Prove that $f(z)=A z+B$ for some $A, B \in \mathbb{C}$ with $\mathrm{A}+\mathrm{B}=0$.
3. Consider the series

$$
f(z)=\sum_{n=0}^{\infty} z^{n!}
$$

(a) Show that $f(z)$ defines an analytic function in the open unit disc $D(0,1)$.
(b) Verify that for all $k \geq 1$, and for all k-th roots of unity $w,\left(\right.$ i.e. $\left.w^{k}=1\right), f(w)=\infty$ holds.
(c) Show that in any arc on the unit circle $|z|=1$, there are N-th roots of unity for infinitely many N. (Hint: Use the map $[0,1] \rightarrow\{z:|z|=1\}, t \longmapsto e^{2 \pi i t}$ to work in $[0,1])$.
(d) Using the results of b) and c) show that $f(z)$ cannot be continued analytically to any domain Ω which properly contains $\mathrm{D}(0,1)$.
4. Let Ω be a convex bounded domain and γ a closed smooth curve in Ω. Suppose that f and g are analytic functions on $\bar{\Omega}, f$ zero free on γ.
(a) Compute the residue of $\frac{g \cdot f^{\prime}}{f}$ at a zero of f in Ω.
(b) Compute $\frac{1}{2 \pi i} \oint_{\gamma} \frac{g(z) f^{\prime}(z)}{f(z)} d z$.

