METU - Mathematics Department Graduate Preliminary Exam

Complex Analysis

Duration : 3 hours

September 2006

1. Consider the function $f: \mathbb{C} \rightarrow \mathbb{C}$ defined by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}} & \text { for }(x, y) \neq(0,0) \\
0 & \text { at }(0,0)
\end{array}\right.
$$

Show that
a) $f(x, y)$ is a continuous function of the variables x and y.
b) The functions $u(x, y)=\operatorname{Re}(f(x, y))$ and $v(x, y)=\operatorname{Im}(f(x, y))$ satisfy the Cauchy-Riemann equations at $z=0$.
c) $f^{\prime}(z)$ does not exist at $z=0$.

Why does the conclusion in (c) not contradict part (b) ?
2. Let $f(z)$ be a continuous function on the unit circle $S^{1}=\{z:|z|=1\}$. Show that the function

$$
F(z)=\int_{S^{1}} \frac{f(\xi)}{(\xi-z)} d \xi
$$

is analytic on $D=\{z:|z|<1\}$ and that

$$
F^{\prime}(z)=\int_{S^{1}} \frac{f(\xi)}{(\xi-z)^{2}} d \xi
$$

3. Explain how to choose a branch of $f(z)=\sqrt{z^{2}-1}$ which is analytic in $\mathbb{C}-[-1,1]$.
a) Using this branch and the residue at infinity, compute $\int_{\Gamma} f(z) d z$ where Γ is the circle $|z|=\rho>1$.
b) Compute the improper integral $\int_{0}^{1} \frac{d x}{\sqrt{x^{2}-1}}$ using the complex integral $\int_{\Gamma} \frac{d z}{f(z)}$ where Γ is given as
(Hints :
1) Residue at infinity is defined by $\operatorname{res}(g(z), \infty)=-\operatorname{res}\left(g(1 / t) / t^{2}, 0\right)$.
2) The binomial series is given by $(1+z)^{\alpha}=\sum c_{n} z^{n}$ where $c_{n}=\frac{\alpha \cdot(\alpha-1) \ldots(\alpha-n+1)}{n!}$.)
4. Let $f(z)$ be an analytic function in the unit disk $D=\{z:|z|<1\}$ and suppose that $|f(z)| \leq 1$ in D. Prove that if $f(z)$ has at least two fixed points, then $f(z)=z$ for all $z \in D$.
(Hint: Using a suitable automorphism of the disk reduce to the case where one of the fixed points is $0 \in D$ so that $g(z)=f(z) / z$ defines an analytic function on D.)
