M.E.T.U
 Department of Mathematics Preliminary Exam - Feb. 2011 COMPLEX ANALYSIS

Duration : 180 min.

1. (25 pt.) Consider the entire function $f(z)=e^{z^{2}}$.
a) Show that for $w \in \mathbb{C}^{*}$ the set $f^{-1}(w)=\{z: f(z)=w\} \neq \emptyset$ and is discrete.
b) Can you find $w \in \mathbb{C}^{*}$ for which the set $f^{-1}(w)=\{z: f(z)=w\}$ is bounded ? How is your answer related to the behaviour of $f(z)$ at ∞ ?
c) Show that there exists a disc $D(0 ; \delta)$ such that $f(z)$ takes each value $w \in f(D(0 ; \delta))$ exactly twice in $D(0 ; \delta)$.
2. (25 pt.) Consider the set \mathcal{F} of all meromorphic functions on \mathbb{C} which have exactly the following zeros and poles.
Zeros at $z_{1}=0, z_{2}=1$ of order 2,3 respectively, poles at $p_{1}=i, p_{2}=-i$ each of order 2 .
a) Write a rational function $f_{0}(z) \in \mathcal{F}$.
b) Determine the structure of the most general function $g(z) \in \mathcal{F}$.
c) For an arbitrary function $g(z) \in \mathcal{F}, g \neq f_{0}$ determine the type of the singularity at each singular point in \mathbb{C} of $f_{0}(z) \cdot g(z), f_{0}(z)+g(z)$.
3. (25 pt.) Let $D^{*}(a ; R)$ denote the disc of radius $R>0$ with a puncture at the center a.
a) Write an analytic isomorphism $\Phi: D^{*}\left(0, R_{1}\right) \rightarrow D^{*}\left(i ; R_{2}\right)$.
b) Prove that every analytic isomorphism $\Phi: D^{*}\left(0, R_{1}\right) \rightarrow D^{*}\left(i ; R_{2}\right)$ extends to an analytic isomorphism $D\left(0, R_{1}\right) \rightarrow D\left(i ; R_{2}\right)$.
c) Using Φ you wrote in (a), construct an analytic isomorphism

$$
\Psi: D\left(0 ; R_{1}\right)-\{1 / 2\} \rightarrow D^{*}\left(i ; R_{2}\right) .
$$

4. (25 pt.) True or false ? Explain.
a) Suppose that $f(z)$ is analytic in $D(0 ; \delta)$ and let $g(z)=(f(z)-1)^{N}$ for some integer $N \geq 1$. If

$$
\int_{\Gamma(r)} \frac{d g(z)}{g(z)}=6 \pi i N \text { for all circles } \Gamma(r):|z|=r, 0<r<\delta
$$

then $f(0)=1, f^{\prime}(0)=f^{\prime \prime}(0)=0$ and $f^{\prime \prime \prime}(0) \neq 0$.
b) If $g(z)$ is analytic in $\Omega=\mathbb{C}-\{a, b\}$ and satisfies

$$
\operatorname{Residue}(g ; a)=\operatorname{Residue}(g ; b)=0
$$

then for $z \in \Omega$ the integral $F(z)=\int_{0}^{z} g(u) d u$ is independent of the path connecting 0 and z.
c) The function $f(z)=\sin \left(\sqrt{z^{2}-1}\right)$ has an analytic branch in

$$
\mathbb{C}-\{z \in \mathbb{R}: z \geq 1\} .
$$

d) There exist non-constant doubly periodic functions $f(z)$ with simple poles at each point of the period lattice $L=\{m+n i: m, n \in \mathbb{Z}\}$.

