## Complex Analysis Preliminary Exam Feb. 2019

- 1. (a) (5pts) State Rouche's Theorem.
  - (b) (15 pts) Let f be a holomorphic function in  $U \subset \mathbb{C}$ . If  $f'(z_0) = 0$  for some  $z_0 \in U$  then one can find r > 0,  $\rho > 0$  such that ,  $f'(z) \neq 0$ ,  $\forall z \in \{0 < |z z_0| < r\} \subset U$ , and  $|f(z) f(z_0)| > \rho$ ,  $\forall z : |z z_0| = r$ . (Explain why?) Then show that for any w such that  $|w f(z_0)| < \rho$ , f(z) w has at least 2 **distinct** zeroes in the disk  $\{|z z_0| < r\}$ .
  - (c) (5 pts) Note that in part (b) you showed that if f is one-to-one in U then f' has no zeroes. Is the converse true? That is, if f' never vanishes in U, then is it true that f must be one-to-one in U?
- 2. (25pts) Show that, if f is analytic on the unit disk  $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$  and continuous on  $\overline{\mathbb{D}}$  with |f(z)| = 1 on  $\partial D$ , then f is a rational function, that is f = P/Q where P, Q are polynomials.
- 3. (a) (15pts) Find a conformal map from the strip  $\{z \in \mathbb{C} : 0 < Re \ z < 1\}$  onto the unit disk  $\mathbb{D}$ .
  - (b) (10pts) Show that  $\mathbb{C}$  and the upper half-plane  $\mathbb{H} = \{z \in \mathbb{C} : Imz > 0\}$  are not biholomorphic. (Two subsets are called biholomorphic if there is a conformal map between them )
- 4. (a) (10pts) Show that  $f(z) = \sum_{n=0}^{\infty} z^{(2^n)}$  is analytic on the open unit disk.
  - (b) (15pts) Show that f can not be extended analytically to any open set which is larger than the unit disk.

(Hint: First show that  $f(z) = z + f(z^2)$  and hence (why?)  $f(r) \to \infty$  as  $\mathbb{R} \ni r \to 1^-$ . Then by considering the roots of unities, explain why this implies that f can not be extended through any point on the boundary of the unit disk.)