Graduate Preliminary Examination
 Differentiable Manifolds
 Duration: 3 hours

September 26, 2003

1. We identify \mathbb{R}^{4} with the set of 2×2 real matrices.
(5 pts.) (a) Show that the set $S L(2, \mathbb{R})$ of 2×2 real matrices whose determinant is equal to 1 is a submanifold of \mathbb{R}^{4}. What is its dimension?
(5 pts.) (b) Prove that the tangent space to $S L(2, \mathbb{R})$ at the identity matrix $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, may be identified with the set of matrices of zero trace.
2. (3 pts.) (a) Show that the 1 -form $\omega=\frac{x d y-y d x}{x^{2}+y^{2}}$ defined on $\mathbb{R}^{2}-\{(0,0)\}$ is closed.
$\left(3\right.$ pts.) (b) Calculate the integral $\int_{S^{1}} \omega$, where S^{1} is the unit circle in \mathbb{R}^{2}.
(4 pts.) (c) Let Σ be the smooth surface shown below with boundary C. Prove that there is no smooth map $\phi: \Sigma \rightarrow S^{1}$ such that $\phi_{\mid C}: C \rightarrow S^{1}$, the restriction of ϕ to the boundary C, is a diffeomorphism.
3. Let $f: X \rightarrow Y$ is a smooth map between manifolds, f^{*} is the induced map between the algebras of differential forms of X and Y and d is the exterior derivative.
(5 pts.) (a) Prove that $d \circ f^{*}=f^{*} \circ d$.
(5 pts.) (b) If $X=\partial W$ for some compact smooth manifold W, and ω is a closed n-form on Y with $n=\operatorname{dim} X$, then show that

$$
\int_{X} f^{*}(\omega)=0
$$

4. (10 pts.) A curve in a manifold X is a smooth map $t \mapsto c(t)$ of an interval of \mathbb{R}^{1} into X. The velocity vector of the curve c at time t_{0} - denoted simply by $\frac{d c}{d t}\left(t_{0}\right)$ is defined to be the vector $d c_{t_{0}}(1) \in T_{x_{0}} X$, where $x_{0}=c\left(t_{0}\right)$ and $d c_{t_{0}}: \mathbb{R}^{1} \rightarrow T_{x_{0}} X$ is the differential of c at t_{0}. In case $X=\mathbb{R}^{k}$ and $c(t)=\left(c_{1}(t), \cdots, c_{k}(t)\right)$ in coordinates, check that

$$
\frac{d c}{d t}\left(t_{0}\right)=\left(c_{1}^{\prime}(t), \cdots, c_{k}^{\prime}(t)\right)
$$

Prove that any vector in $T_{x} X$ is the velocity vector of some curve in X, and conversely.

