METU-MATHEMATICS DEPARTMENT Graduate Preliminary Examinations

Geometry

Duration: 3 hours

September 24, 2004

- 1. Consider (0, 2)-tensor field T and a (1, 1)-tensor field S on \mathbb{R}^2 , with the components $T_{i,j} = S_j^i = i j + 2$, i, j = 1, 2, where \mathbb{R}^2 is considered as a manifold with usual coordinates (i.e. with coordinates with respect to the standard basis e_1, e_2)
 - (a) Determine the components $T_{\alpha\beta} S^{\alpha}_{\beta}$ of T and S when the coordinates in \mathbb{R}^2 are considered with respect to the basis $f_1 = e_1 + e_2$ and $f_2 = 2e_1 + e_2$
 - (b) Determine the components of Alt T and Sym T with respect to the basis e_1, e_2).
- 2. For each point p = [u, v, w] on $\mathbb{R}P^2$ define curves γ_p and σ_p by

$$\gamma_p(t) = [u, e^{-t}v, e^{-t}w]$$

$$\sigma_p(t) = [u\cos t - v\sin t, u\sin t + v\cos t, w]$$

for $t \in \mathbb{R}$. Consider the vector fields $A, B \in \mathfrak{X}(\mathbb{R}P^2)$ which assigns the values $\gamma'_p(0)$ and $\sigma'_p(0)$ respectively to each point $p \in \mathbb{R}P^2$

- (a) Introduce a chart of your own choice on $\mathbb{R}P^2$ and find local expressions for A, B on this chart.
- (b) Find local expressions for the Lie bracket [A, B] on the same chart.
- (c) For each point p = [u, v, w] on $\mathbb{R}P^2$ find a curve $\theta_p : \mathbb{R} \to \mathbb{R}P^2$ such that $\theta_p(0) = p$ and [A, B] takes the value $\theta'_p(0)$ at the point $p \in \mathbb{R}P^2$.
- 3. Consider the two dimensional sphere

$$\mathbf{S}^{2} = \{(u, v, w) \in \mathbb{R}^{3} \mid u^{2} + v^{2} + w^{2} = 1\} \subseteq \mathbb{R}^{3}$$

with its usual smooth structure and the smooth maps $f,g:\mathbf{S}^2\to\mathbb{R}$ defined by

$$f((u, v, w)) = w$$

$$g((u, v, w)) = u$$

(a) Evaluate the integral

$$\int_M df \wedge dg$$

where M is the manifold with boundary defined by

$$M = \{ (u, v, w) \in \mathbf{S}^2 \mid v \ge 0 \}$$

without employing Stokes' theorem.

- (b) Use Stokes' theorem to evaluate the same integral.
- 4. Let M be a compact manifold and let $f : M \to N$ be a submersion where N is an arbitrary manifold with dim $M = \dim N$. Define a function $\varphi : N \to \mathbb{R} \cup \{\infty\}$ by

$$\varphi(y) =$$
number of points in $f^{-1}(y)$

- (a) Prove that $\varphi(y)$ is finite for each $y \in N$.
- (b) Prove that $\varphi:N\to\mathbb{R}$ is a locally constant function.