METU - Mathematics Department Graduate Preliminary Exam

Geometry

Duration: 3 hours Fall 2005

- 1. a) Show that a one-to-one immersion of a **compact** manifold is an imbedding.
 - **b)** Explain, in full details, why the map $\phi: (-\pi, \pi) \to \mathbb{R}^2$, $\phi(s) = (\sin(2s), \sin(s))$ shows that the conclusion in part (a) is false if X is not compact.
- 2. Let $SL_n(\mathbb{R})$ denote the $n \times n$ real matrices with determinant 1.
 - a) Show that $SL_n(\mathbb{R})$ is a submanifold of the $n \times n$ matrices $M_n(\mathbb{R})$.
 - **b)** Show that the tangent space to $SL_n(\mathbb{R})$ at the identity matrix I is $T_ISL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) : trace(A) = 0\}.$
- 3. a) What is meant by an orientation on a manifold?
 - **b)** Show that $S^n = \{ \overline{x} \in \mathbb{R}^{n+1} : |\overline{x}| = 1 \}$ is an oriented manifold, by defining an orientation on it.
 - c) Show that the antipodal map $S^n \to S^n$, $\overline{x} \mapsto -\overline{x}$ is orientation preserving if and only if n is odd.
 - d) Using (c), or otherwise show that $\mathbb{R}P^n$ is orientable if and only if n is odd.
- 4. a) Show that $X = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$ is a closed submanifold of \mathbb{R}^3 .
 - **b**) Verify that the restriction $\omega|_X$ of $\omega = \frac{xdy ydx}{x^2 + y^2}$ is a closed 1-form on X.
 - c) Calculate $\int_S \omega|_X$, where S is the circle $\{(x,y,3): x^2+y^2=1\}\subset X$. Is $\omega|_X$ an exact form ? Why ?
 - **d)** Consider the mapping $\Psi: \mathbb{R}^2 \to X$, $\Psi((s,t)) = (\cos(s), \sin(s), t)$. Show that Ψ is a differentiable map and that the form $\Psi^*(\omega|_X)$ is exact.