METU MATHEMATICS DEPARTMENT DIFFERENTIABLE MANIFOLDS SEPTEMBER 2012 - TMS EXAM

SEPTEMBER 17, 2012

1.) Let $f: \mathbb{R}^3 \to \mathbb{R}$ by $f(x, y, z) = (x^2 + y^2 + z^2 - r^2 + 1)^2 - 4(x^2 + y^2)$,

where 0 < r < 1 is a constant.

- a) Show that $M = f^{-1}(0)$ is a smooth submanifold of \mathbb{R}^3 .
- b) Determine the tangent space $T_{(r+1,0,0)}M$ as a subspace of $T_{(r+1,0,0)}\mathbb{R}^3$.
- 2.) Consider the vector field on \mathbb{R}^3 given by

$$Y = (z - y)\frac{\partial}{\partial x} + (x - z)\frac{\partial}{\partial y} + (y - x)\frac{\partial}{\partial z} .$$

- a) Show that the restriction of Y to the unit sphere $S^2 \subseteq \mathbb{R}^3$ defines a vector field on the unit sphere.
- b) Determine the zeros of the vector field on the sphere.
- 3.) Consider the quotient topological space

$$M = \mathbb{R}^3 / (x, y, z) \sim (x + 1, y - 1, -z) , (x, y, z) \in \mathbb{R}^3$$
.

- a) Show that M is a smooth manifold of dimension three.
- b) Prove that M is not orientable showing that any 3-form on M has at least one zero.
- **4.a)** Let $f, g: \mathbb{R}^n \to \mathbb{R}$ be smooth functions. Show that the 1-form

$$\omega = \frac{f \, dg - g \, df}{f^2 + g^2} \in \Omega^1(\mathbb{R}^n - Z) ,$$

where $Z = \{ p \in \mathbb{R}^n \mid f(p) = 0 = g(p) \}$ is the set of common zeros of the functions f and g.

b) Let $\gamma:[0,1]\to\mathbb{R}^n-Z$ be a smooth path such that $f(\gamma(t))=1$ for all $t\in[0,1]$, and $g(\gamma(0))=-1$ and $g(\gamma(1))=1$. Calculate the integral

$$\int_{[0,1]} \gamma^*(\omega) .$$