Differentiable Manifolds TMS EXAM

September 16, 2013

Duration: 3 hr.

- 1. Find the tangent space to the surface $S: x^4 y + z = 1$ at the point p = (1, -1, 1) as a subspace of \mathbb{R}^3 in two different ways:
- (a) Using a local coordinate system at p.
- (b) Exhibiting S as the preimage of a regular value under a map $f: \mathbb{R}^3 \to \mathbb{R}$ and then using the derivative of f (i.e. the induced map f_*).
- 2. Let $F: P^2(\mathbb{R}) \to P^1(\mathbb{R})$ be the map which is given by $F([x,y,z]) = [xy+x^2,y^2+z^2]$. (Notation: The class of $x = (x_1,\ldots,x_{n+1})$ in $P^n(\mathbb{R})$ is denoted by $[x] = [x_1,\ldots,x_{n+1}]$.)
- (a) Show that F is well defined.
- (b) Choose a chart (U, ϕ) around a point $p = [x_0, y_0, z_0]$ in $P^2(\mathbb{R})$ with $y_0 \neq 0$ and a chart (V, ψ) around F(p) with $F(U) \subset V$. Write the local expression of F in these charts. Is F smooth at p? Why?
- (c) Compute the rank of the map F.
- 3. Consider the form $\omega = ydx xdy$ in \mathbb{R}^3 .
- (a) Find the local expression of the restriction of this form to the cylinder $M: x^2 + y^2 = 1$ (i.e. $i * (\omega)$ where $i: M \to \mathbb{R}^3$ is the inclusion map) with respect to any chart of your choice
- (b) Let η be the form you have found in part (a). Find the local expression of $d\eta$ with respect to the chart you have used in part(a).
- 4. Let N be the unit ball in \mathbb{R}^3 and let f, g, h be smooth real valued functions defined on \mathbb{R}^3 . Using Stokes Theorem write te the integral of $\omega = f dy \wedge dz + g dz \wedge dx + h dx \wedge dy$ (more precisely the integral of the restriction of this form) over the boundary of N as an integral over N. Also write it as a (iterated) Riemannian integral.
- 5. Prove the following
- (a) If $F: N \to M$ is a one-to-one immersion and N is compact, then F is an imbedding.
- (b) If $F: N \to M$ is an immersion then each $p \in N$ has a neighborhood U such that F|U is an imbedding of U in M.