Geometry TMS EXAM

September 28, 2017

Duration: 3 hr.

- 1. Let M, N be smooth manifolds
 - (a) Let a be a point in N and let $i_M: M \to M \times N$ be the map given by $i_M(p) = (p, a)$. Show that i_M is smooth.
 - (b) Show that there is an isomorphism between the spaces $T_{(p,q)}(M \times N)$ and $T_p(M) \times T_q(N)$
 - (c) Show that $(i_M)_*(v) = (v,0)$ for $v \in T_p(M)$ under the identification mentioned in part (b).
- 2. Let $F: P^2(\mathbb{R}) \to P^2(\mathbb{R})$ be defined by

$$F([x:y:z]) = [x^4 + z^4: x^2y^2: y^4]$$

- (a) Show that F is well defined and smooth.
- (b) Find the rank of this map at the point [0:1:1].
- 3. (a) Let M be a smooth oriented manifold with boundary. Describe the boundary orientation on the manifold ∂M .
 - (b) Let $f: X \to Y$ between manifolds X and Y. If $X = \partial W$ for some compact smooth oriented manifold W, and ω is a closed n-form on Y with $n = \dim X$, then show that

$$\int_X f_*^{-1}(\omega) = 0$$

- 4. Let S^3 be the unit sphere in \mathbb{R}^4 , $i:S^3\to\mathbb{R}^4$ the inclusion map and ω be the differential form $x^1dx^2-x^2dx^1+x^3dx^4-x^4dx^3$ on \mathbb{R}^4 .
 - (a) Choose any chart on S^3 and find the components of the pull-back form $i^*(\omega)$ with respect to this chart.
 - (b) Show that the restriction of the form ω to S^3 (i.e. the form $i^*(\omega)$) is never zero on S^3 .