M.E.T.U. Department of Mathematics TMS Exam in Geometry September 18th, 2019 Duration: 180 minutes

There are 5 problems and each is worth 20 points.

1. Let $M = \{(x, y, z) \in \mathbb{R}^3 : (1 - z^2)(x^2 + y^2) = 1\}$ (a) Show that M is an embedded smooth submanifold of \mathbb{R}^3 . (b) Show that the restriction of vector field $V = z^2 x \frac{\partial}{\partial x} + z^2 y \frac{\partial}{\partial y} + z(1 - z^2) \frac{\partial}{\partial z}$ on \mathbb{R}^3 is a tangent vector field of M.

2. Let S^1 be the unit circle in \mathbb{R}^2 and $t = \frac{x}{1-y}$ be the coordinate on S^1 given by stereographic projection from north pole, N. Let $V = v(t)\frac{d}{dt}$ denote a smooth vector field on $S^1 \setminus \{N\}$.

(a) Express V on $S^1 \setminus \{N, S\}$ by using the coordinate on S^1 given by stereographic projection from south pole, S.

(b) Find a condition on v(t) that guarantees that V extends to a global smooth vector field on S^1 . Does $V = t^3 \frac{d}{dt}$ extend to a smooth vector field on S^1 ?

3. Consider the following vector fields on \mathbb{R}^3

$$V = x\frac{\partial}{\partial x} + z\frac{\partial}{\partial y} + 2\frac{\partial}{\partial z}$$
$$W = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z}$$

Compute the following quantities.

(a) The curve $\beta(t)$ in \mathbb{R}^3 such that $\beta'(t) = V(\beta(t)), \ \beta(0) = (x_0, y_0, z_0)$ i.e. the integral curve of V.

(b) The push-forward $F_*W_{|(u,v,w)}$ where $F: \mathbb{R}^3 \setminus \{y=0\} \longrightarrow \mathbb{R}^3$ defined as

$$F(x, y, z) = (y - x, 1 - \frac{x}{y}, 2z)$$

(c) The Lie bracket [V, W].

4. (a) Prove that a submersion $F: M \longrightarrow N$ is an open map.

(b) Show that there is no submersion $F: S^3 \longrightarrow \mathbb{R}^2$. How about if \mathbb{R}^2 is replaced by S^2 ?

5. Let $i: S^1 \longrightarrow \mathbb{R}^2$ be the inclusion of unit circle S^1 into \mathbb{R}^2 with standard orientation and ω be the closed 1-form $\omega = \frac{xdy - ydx}{x^2 + y^2}$ on \mathbb{R}^2 .

- (a) Compute $\int_{S^1} i^* \omega$.
- (b) Is $i^*\omega$ exact on S^1 ?

(c) Show that on a compact manifold M a non-zero (non-zero at every point of M) 1-form can not be exact.

(d) Let M be a smooth compact manifold which admits a smooth submersion $F: M \longrightarrow S^1$. Use previous parts to show that there exists a closed 1-form on M which is not exact (i.e. $H^1_{DR}(M) \neq 0$).