METU-MATHEMATICS DEPARTMENT Graduate Preliminary Examinations

Geometry

Duration: 3 hours

February 18, 2005

- 1. Consider the set $M=\{(x,y,z,w)\in \mathbb{R}^4\mid x^2+y^2=1\ ,\ z^2+w^2=1\}\subseteq \mathbb{R}^4$.
 - (a) Prove that M is an (imbedded) submanifold of \mathbb{R}^4 .
 - (b) Describe the tangent vectors of M at an arbitrary point $(a,b,c,d)\in M$.
 - (c) Write down a nowhere vanishing vector field on ${\cal M}$.
 - (d) Let $\omega = (ydx xdy) \land (wdz zdw) \in \Omega(\mathbb{R}^4)$. Show that $\int_M i_{\star}(w) > 0$ where $i : M \to \mathbb{R}^4$ is the inclusion map (Hint: Write a local parametrization for M).
 - (e) A consequence of Poincaré Lemma is that every closed form on \mathbb{R}^n for any n is also exact. Prove that there exists no 4-form $\theta \in \Omega(\mathbb{R}^4)$ with $d\theta = 0$ such that $\int_M i^*(\theta) \neq 0$.
- **2.** Consider the (k-1) dimensional sphere S^{k-1} as a submanifold of S^k via the usual embedding $(x_1, x_2, \ldots, x_k) \to (x_1, x_2, \ldots, x_k, 0)$. Show that the orthogonal complement to $T_p(S^{k-1})$ in $T_p(S^k)$ is spanned by the vector $(0, 0, \ldots, 1)$.
- **3.** Let ω be a compactly supported 2-form

 $w = f_1 \ dx_2 \wedge dx_3 + f_2 \ dx_3 \wedge dx_1 + f_3 \ dx_1 \wedge dx_2$

on \mathbb{R}^3 . Let S be the graph of a function $G : \mathbb{R}^2 \to \mathbb{R}$. Compute the integral $\int_S \omega$, and show that it is equal to $\int_{\mathbb{R}^2} (\vec{F}.\vec{u}) ||\vec{n}|| dx_1 \wedge dx_2$ where $\vec{F} = (f_1, f_2, f_3), \vec{u} = \frac{\vec{n}}{||\vec{n}||}$ with $\vec{n} = (-\frac{\partial G}{\partial x_1}, -\frac{\partial G}{\partial x_2}, 1)$.

4. Consider the sets

 $M_1 = \{ [u, v, w] \in \mathbb{R}P^2 \mid u^2 + v^2 = w^2 \} \subseteq \mathbb{R}P^2 .$ $M_2 = \{ [u, v, w] \in \mathbb{R}P^2 \mid u^2 - v^2 = w^2 \} \subseteq \mathbb{R}P^2 .$

- (a) Prove that M_1 is an (imbedded) submanifold of $\mathbb{R}P^2$ diffeomorphic to \mathbf{S}^1 (Hint: Consider the image of M_1 under a suitable chart of $\mathbb{R}P^2$).
- (b) Find a diffeomorphism $F : \mathbb{R}P^2 \to \mathbb{R}P^2$ such that $F(M_1) = M_2$.