# METU-MATHEMATICS DEPARTMENT Graduate Preliminary Examinations <br> <br> Geometry 

 <br> <br> Geometry}

## Duration: 3 hours

February 18, 2005

1. Consider the set $M=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x^{2}+y^{2}=1, z^{2}+w^{2}=1\right\} \subseteq$ $\mathbb{R}^{4}$.
(a) Prove that $M$ is an (imbedded) submanifold of $\mathbb{R}^{4}$.
(b) Describe the tangent vectors of $M$ at an arbitrary point $(a, b, c, d) \in$ M.
(c) Write down a nowhere vanishing vector field on $M$.
(d) Let $\omega=(y d x-x d y) \wedge(w d z-z d w) \in \Omega\left(\mathbb{R}^{4}\right)$. Show that $\int_{M} i_{\star}(w)>$ 0 where $i: M \rightarrow \mathbb{R}^{4}$ is the inclusion map (Hint: Write a local parametrization for $M$ ).
(e) A consequence of Poincaré Lemma is that every closed form on $\mathbb{R}^{n}$ for any $n$ is also exact. Prove that there exists no 4 -form $\theta \in \Omega\left(\mathbb{R}^{4}\right)$ with $d \theta=0$ such that $\int_{M} i^{\star}(\theta) \neq 0$.
2. Consider the the $(k-1)$ dimensional sphere $S^{k-1}$ as a submanifold of $S^{k}$ via the usual embeddding $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \rightarrow\left(x_{1}, x_{2}, \ldots, x_{k}, 0\right)$. Show that the orthogonal complement to $T_{p}\left(S^{k-1}\right)$ in $T_{p}\left(S^{k}\right)$ is spanned by the vector $(0,0, \ldots, 1)$.
3. Let $\omega$ be a compactly supported 2 -form
$w=f_{1} d x_{2} \wedge d x_{3}+f_{2} d x_{3} \wedge d x_{1}+f_{3} d x_{1} \wedge d x_{2}$
on $\mathbb{R}^{3}$. Let $S$ be the graph of a function $G: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Compute the integral $\int_{S} \omega$, and show that it is equal to $\int_{\mathbb{R}^{2}}(\vec{F} . \vec{u})\|\vec{n}\| d x_{1} \wedge d x_{2}$ where $\vec{F}=\left(f_{1}, f_{2}, f_{3}\right), \vec{u}=\frac{\vec{n}}{\|\vec{n}\|}$ with $\vec{n}=\left(-\frac{\partial G}{\partial x_{1}},-\frac{\partial G}{\partial x_{2}}, 1\right)$.
4. Consider the sets
$M_{1}=\left\{[u, v, w] \in \mathbb{R} P^{2} \mid u^{2}+v^{2}=w^{2}\right\} \subseteq \mathbb{R} P^{2}$.
$M_{2}=\left\{[u, v, w] \in \mathbb{R} P^{2} \mid u^{2}-v^{2}=w^{2}\right\} \subseteq \mathbb{R} P^{2}$.
(a) Prove that $M_{1}$ is an (imbedded) submanifold of $\mathbb{R} P^{2}$ diffeomorphic to $\mathbf{S}^{1}$ (Hint: Consider the image of $M_{1}$ under a suitable chart of $\mathbb{R} P^{2}$ ).
(b) Find a diffeomorphism $F: \mathbb{R} P^{2} \rightarrow \mathbb{R} P^{2}$ such that $F\left(M_{1}\right)=M_{2}$.
