Differentiable Manifolds TMS EXAM 13 February 2015

Duration: 3 hr.

1. Let S^2 be the unit sphere in \mathbb{R}^3 . Consider it with the topology relative to \mathbb{R}^3 . Let $i: S^2 \to \mathbb{R}^3$ be the inclusion map.

- (a) Show that i is an immersion.
- (b) Is i an embedding? Why?

2. Let M, N be two differentiable manifolds and $f: M \to N$ be a smooth map. Define a new map $F: M \to M \times N$ by F(p) = (p, f(p)).

- (a) Show that F is smooth.
- (b) Show that $F_*(v) = (v, f_*(v))$ where F_* and f_* are induced maps at a point p of M and v is a tangent vector of M at p.
- (c) Show that the tangent space to graph(f) at the point (p, f(p)) is the graph of f_* : $T_p M \to T_{f(p)} N$
- **3.** Consider the 1-form $w = (x^2 + 7y)dx + (-x + y\sin y^2)dy$ on \mathbb{R}^2 .
- (a) Is w exact? Is it closed?
- (b) Compute the integral of w over each side of the triangle whose vertices are (0,0), ((1,0), (0,2)) where the sides are oriented in such a way that the triangle is oriented counterclockwise.

4. Let $F: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ be the map F(p) = -p.

- (a) What is the induced map F_* ? Why?
- (b) Show that antipodal map $A: S^n \to S^n$ which is the restriction of F on the *n*-sphere is orientation preserving if and only if n is odd.
- (c) Prove that the real projective space $\mathbb{R}P^n$ is orientable if and only if n is odd.