Graduate Preliminary Examination
 Numerical Analysis I
 Duration: 3 Hours

1. Consider the linear system $A x=b$ where

$$
A=\left[\begin{array}{rrc}
9 & \alpha & -3 \\
\alpha & 10 & 1 \\
-3 & 1 & 2+\beta
\end{array}\right], \quad b=\left[\begin{array}{r}
6 \\
1 \\
-2
\end{array}\right]
$$

with real numbers α and β.
(a) Let $\alpha=-3$. Find the value(s) of β, if any, such that the matrix A has a Cholesky factorization without computing it.
(b) Compute the Cholesky factorization of the matrix A when $\alpha=-3$ and $\beta=3$, and use it to solve the linear system $A x=b$.
(c) Find the conditions on the variables α and β for which the Jacobi method and the Gauss-Seidel method converge to the true solution of the system $A x=b$?
(d) Perform one iteration of the Gauss-Seidel method with $\alpha=-3$ and $\beta=3$ for the linear system $A x=b$, by using the initial approximation $x_{0}=[0,1,0]^{T}$.
2. Let A be $m \times n,(m \geq n)$ real matrix and let A have rank n. Let $b \in \mathbb{R}^{m}$. Prove the following statements.
(a) There exists unique $x \in \mathbb{R}^{n}$ minimizing $\|A x-b\|_{2}^{2}$ where $\|\cdot\|_{2}$ is the 2-norm.
(b) The matrix $A^{T} A$ is invertible and $x=\left(A^{T} A\right)^{-1} A^{T} b$.
3. Given $A \in \mathbb{R}^{n \times n}$ such that

$$
A=\left[\begin{array}{cccccccc}
0 & 1 & 0 & \cdots & \cdots & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & \cdots & 0 & 0 \\
\vdots & & \ddots & \ddots & & & & \vdots \\
\vdots & & & \ddots & \ddots & & & \vdots \\
\vdots & & & & \ddots & \ddots & & \vdots \\
\vdots & & & & & \ddots & 1 & \vdots \\
0 & 0 & \cdots & \cdots & \cdots & \cdots & 0 & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & \cdots & \cdots & -a_{n-2} & -a_{n-1}
\end{array}\right]
$$

(a) Find the Gershgorin's disks for the eigenvalues λ of A.
(b) If $n=5$ and $a_{0}=1, a_{1}=0, a_{2}=-1, a_{3}=0, a_{4}=-2$, draw the Gerschgorin's disks and find a region that contains all the eigenvalues of A.
4. Let $\mathbf{U D V}^{\mathbf{T}}$ be the Singular Value Decomposition (SVD) of an $\mathbf{m} \times \mathbf{n}$ matrix A. Prove that

$$
\left\|\mathbf{U}^{\mathrm{T}} \mathbf{A V}\right\|_{\mathrm{F}}^{2}=\sum_{\mathrm{i}=1}^{\mathrm{p}} \sigma_{\mathrm{i}}^{2}
$$

where $\mathbf{p}=\min \{\mathbf{m}, \mathbf{n}\}, \sigma_{\mathbf{i}}$ denote the singular values of \mathbf{A} and $\|\cdot\|_{\mathbf{F}}$ denotes the Frobenius norm (or Euclidean norm) defined by

$$
\|\mathbf{A}\|_{F}=\left[\sum_{j=1}^{n} \sum_{i=1}^{m}\left|a_{i j}\right|^{2}\right]^{1 / 2}
$$

with $\mathbf{a}_{\mathbf{i j}}$ are the entries of the matrix \mathbf{A}.

