Graduate Preliminary Examination
 Numerical Analysis I
 Duration: 3 Hours

1. (a) Fit a parabola of the form $y=a+b x^{2}$ to the following data by using the least squares approximation.

x	0	1	-2	3
y	1	1	-1	0

(b) Consider the matrix $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]$. Find the singular value decomposition (SVD) of A and the rank of A.
(c) Consider the linear system $A x=b$, for $b \in \mathbb{R}^{3}$ and A is the matrix given in part (b). State the condition such that the equation $A x=b$ has a solution, and the condition such that the solution is unique.
(d) Find the pseudoinverse of the matrix A given in part (b).
(e) Find the solution of the system given in part (c) for $b=\left[\begin{array}{r}-1 \\ 2 \\ -3\end{array}\right]$.
2. (a) Prove the identity

$$
A^{-1}-B^{-1}=A^{-1}(B-A) B^{-1}
$$

and hence deduce that

$$
\left\|A^{-1}-B^{-1}\right\| \leq\left\|A^{-1}\right\|\|B-A\|\left\|B^{-1}\right\|
$$

(b) Prove that if $B=A+\delta A$ where $\|\delta A\|\left\|B^{-1}\right\|=\delta<1$, then it follows that

$$
\left\|A^{-1}\right\| \leq \frac{1}{1-\delta}\left\|B^{-1}\right\|, \quad\left\|A^{-1}-B^{-1}\right\| \leq \frac{\delta}{1-\delta}\left\|B^{-1}\right\|
$$

(c) Prove that if $x=A^{-1} b$ and $x+\delta x=(A+\delta A)^{-1} b$, then

$$
\|\delta x\| \leq \frac{\delta}{1-\delta}\|x+\delta x\| \quad \text { where } \quad \delta=\|\delta A\|\left\|B^{-1}\right\|<1
$$

and

$$
\|\delta x\| \leq \frac{\epsilon}{1-\epsilon}\|x\| \quad \text { where } \quad \epsilon=\|\delta A\|\left\|A^{-1}\right\|<1
$$

3. Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite matrix. Consider the following iteration

$$
\begin{aligned}
& \text { Choose } \quad A_{0}=A \\
& \text { for } \quad k=0,1,2, \ldots, \\
& \text { Compute Cholesky factor } L_{k} \text { of } A_{k}\left(\text { so } A_{k}=L_{k} L_{k}^{T}\right) \\
& \text { Set } A_{k+1}=L_{k}^{T} L_{k} \\
& \text { end }
\end{aligned}
$$

where L_{k} is lower triangular with positive diagonal elements.
(a) Show that A_{k} is similar to A and that A_{k} is symmetric positive definite (thus the iteration is well-defined).
(b) Consider

$$
A=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right], \quad a \geq c
$$

For this matrix, perform one step of algorithm above and write down A_{1}.
(c) Use the result from (b) to argue that A_{k} converges to the diagonal matrix $D=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda 2\end{array}\right]$, where the eigenvalues of A are ordered as $\lambda_{1} \geq \lambda_{2}>0$.
4. Given the matrix

$$
\mathbf{A}=\left[\begin{array}{cc}
2 & 3 \\
-2 & -6 \\
1 & 0
\end{array}\right]
$$

(a) Find the reduced QR-factorization by applying Gram Schmidt ortogonalization to the columns of A.
(b) Find the full QR-factorization of A ?

