Graduate Preliminary Examination
 Numerical Analysis II
 Duration: 3 Hours

1. Given f_{i} and f_{i}^{\prime} at the points $x_{i}, i=1,2$.
(a) Using Newton's divided difference formula, determine the cubic $P(x)$ such that

$$
P\left(x_{i}\right)=f_{i}, \quad \text { and } \quad \frac{d}{d x} P\left(x_{i}\right)=f_{i}^{\prime}
$$

(b) Show that

$$
\int_{x_{1}}^{x_{2}} P(x) d x=\left(x_{2}-x_{1}\right) \frac{f_{1}+f_{2}}{2}+\frac{\left(x_{2}-x_{1}\right)^{2}}{12}\left(f_{1}^{\prime}-f_{2}^{\prime}\right)
$$

(c) What is the numerical use of formula such as that in part (b).
2. Let $\phi_{0}(x), \phi_{1}(x), \phi_{2}(x), \cdots$, be a sequence of orthogonal polynomials on an interval $[a, b]$ with respect to a positive weight funciton $w(x)$. Let x_{1}, \cdots, x_{n} be the n zeros of $\phi_{n}(x)$; it is known that these roots are real and $a<x_{1}<\cdots<x_{n}<b$.
(a) Show that the Lagrange polynomials of degree $n-1$,

$$
L_{j}(x)=\prod_{k=1, k \neq j}^{n} \frac{\left(x-x_{k}\right)}{x_{j}-x_{k}}, \quad 1 \leq j \leq n
$$

for these points are orthogonal to each other, i.e.,

$$
\int_{a}^{b} w(x) L_{j}(x) L_{k}(x) d x=0, \quad j \neq k .
$$

(b) For a given function $f(x)$, let $y_{k}=f\left(x_{k}\right), k=1, \cdots, n$. Show that the polynomial $p_{n-1}(x)$ of degree at most $n-1$ which interpolates the function $f(x)$ at the zeros x_{1}, \cdots, x_{n} of the orthogonal polynomial $\phi_{n}(x)$ satisfies

$$
\left\|p_{n-1}\right\|^{2}=\sum_{k=1}^{n} y_{k}^{2}\left\|L_{k}\right\|^{2}
$$

in the weighted least squares norm. This norm is defined as follows: for any general function $g(x)$,

$$
\|g\|^{2}=\int_{a}^{b} w(x)[g(x)]^{2} d x
$$

3. Let $f(x)=x-e^{-x}$.
(a) Prove that $f(x)=0$ has a root $r \in(0,1)$.
(b) Let (x_{n}) be the Newton's sequence related to $f(x)=0$ with $x_{0} \geq 0$. Prove that

$$
0 \leq x_{n+1} \leq 1+\frac{x_{0}}{2^{n+1}}, \quad \text { for all } n
$$

(c) Take $x_{0}=10^{10}$. How many iterations are needed to have $x_{n} \leq \frac{3}{2}$? Set $e_{n}=x_{n}-r$. Why for such n we have $\left|e_{n}\right| \leq \frac{3}{2}$?
(d) Knowing that $e_{n+1}=\frac{e_{n}^{2} f^{\prime \prime}\left(\theta_{n}\right)}{2 f^{\prime}\left(x_{n}\right)}$ with θ_{n} between x_{n} and r prove that

$$
\left|e_{n+1}\right| \leq 2\left(\frac{e_{0}}{2}\right)^{2^{n+1}}
$$

4. (a) Let us consider $f(x)=\alpha e^{-x}\left(1+x^{2}\right)^{1 / 2}$ in $\Omega=[0,1]$. For which values of α has $f(x)$ a unique fixed point in Ω.
(b) Apply Newton's method to the function $f(x)=1 / x-a$ to find $g(x)$ such that the iterates

$$
x_{k+1}=g\left(x_{k}\right)
$$

converge to $1 / a$. Show that this iteration formula can be written in the interesting form

$$
x_{k+1} f\left(x_{k+1}\right)=\left(x_{k} f\left(x_{k}\right)\right)^{2} .
$$

