Graduate Preliminary Examination Numerical Analysis II Duration: 3 Hours

- 1. By using Newton form of an interpolating polynomial show that
 - (a) If $p(x) \in P_n$ interpolates a function f at a set of n+1 distinct nodes x_0, x_1, \dots, x_n and if t is a point different from the nodes, then

$$f(t) - p(t) = f[x_0, x_1, \dots, x_n, t] \prod_{j=0}^{n} (t - x_j).$$

(b) If $f \in C^n[a,b]$ and if x_0, x_1, \dots, x_n are distinct points in [a,b] then there exists a point $\xi \in (a,b)$ such that

$$f[x_0, x_1, \cdots, x_n] = \frac{f^{(n)}(\xi)}{n!}.$$

(c) If f is a polynomial of degree k, then for n > k

$$f[x_0, x_1, \cdots, x_n] = 0.$$

Note: P_n is the set of all n-th degree polynomials, \prod denotes product notation $f[x_0, x_1, \dots, x_n]$ is the n-th order divided difference of f, $f^{(n)}$ denotes n-th derivative of f.

2. Let $\phi_0(x), \phi_1(x), \phi_2(x), \cdots$, be a sequence of orthogonal polynomials $(\phi_j(x))$ is a jth degree polynomial) on an interval [a, b] with respect to a positive weight function w(x). Let x_1, \dots, x_n be the n zeros of $\phi_n(x)$; it is known that these roots are real and

$$a < x_1 < \cdots, < x_n < b.$$

(a) Show that the Lagrange polynomials of degree n-1,

$$L_j(x) = \prod_{\substack{k=\\k\neq j}} \frac{(x-x_k)}{(x_j - x_k)}, \quad 1 \le < \le n$$

for these points are orthogonal to each other, i.e.,

$$\int_{a}^{b} w(x)L_{j}(x)L_{k}(x)dx = 0, \quad j \neq k.$$

(b) For a given function f(x), let $y_k = f(x_k)$, $k = 1, \dots, n$. Show that the polynomial $p_{n-1}(x)$ of degree at most n-1 which interpolates the function f(x) at the zeros x_1, \dots, x_n of the orthogonal polynomial $\phi_n(x)$ satisfies

$$||p_{n-1}||^2 = \sum_{k=1}^n y_k^2 ||L_k||^2$$

in the weighted least squares norm. This norm is defined as follows: for any general function g(x).

$$||g||^2 = \int_a^b w(x)g(x)^2 dx.$$

- 3. Suppose s is a root of the equation f(x) = 0 with multiplicity 2 (double root).
 - (a) Show that Newton's method converges to this root linearly.
 - (b) Modify Newton's method such that the sequence $\{x_n\}$ obtained from Newton's iterations converges to s quadratically.
 - (c) By using Newton's method find $\sqrt[5]{32}$. Take starting value $x_0 = 1.8$ and carry out at most 3 iterations.

4. You are required to obtain numerical integration formulas for

$$\int_{-1}^{1} f(x) dx$$

- (a) Using only f(1), f'(-1) and f''(0) find an approximation to $\int_{-1}^{1} f(x)dx$ which is exact for all quadratic polynomials. i.e. $\int_{-1}^{1} f(x)dx = Af(1) + Bf'(-1) + Cf''(0)$.
- (b) Derive a 3- point Gaussian quadrature formula

$$\int_{-1}^{1} f(x)dx = A_0 f(x_0) + A_1 f(x_1) + A_3 f(x_3).$$

(c) Show that the formula obtained in part (b) is exact for all polynomials of degree 5.