Graduate Preliminary Examination
 Numerical Analysis II
 Duration: 3 Hours

1. (a) Show that the function $f:(0,1) \rightarrow(0, \infty)$ defined by $f(x)=-\ln x$ has a unique fixed point $s \in(0,1)$.
(b) Show, however, that fixed point iteration on $f(x)$ does NOT converge to s.
(c) Reformulate the problem so that s is the unique fixed point of another function g for which the fixed point iteration converged to s for any $x_{0} \in$ $(0,1)$.
2. (a) Write down the conditions that should be satisfied so that the following function is a natural cubic spline on the interval [0,2]:

$$
S(x)= \begin{cases}f_{1}(x) & : x \in[0,1] \\ f_{2}(x) & : x \in[1,2]\end{cases}
$$

(b) Determine the values of the coefficients a, b, c, d so that the following

$$
S(x)= \begin{cases}x^{2}+x^{3}, & : x \in[0,1] \\ a+b x+c x^{2}+d x^{3} & : x \in[1,2]\end{cases}
$$

is a cubic spline which has the property $S_{1}^{\prime \prime \prime}(x)=12$.
3. Let $\langle f, g\rangle=\int_{a}^{b} w(x) f(x) g(x) d x$, where $w(x) \geq 0$ is a given weight function on $[a, b]$.
(a) Prove that the sequence of polynomials defined below is orthogonal with respect to the inner product $\langle.,$.$\rangle :$

$$
p_{n}(x)=\left(x-a_{n}\right) p_{n-1}(x)-b_{n} p_{n-2}(x), \quad n>1
$$

with

$$
\begin{gathered}
p_{0}(x)=1, p_{i}(x)=x-a_{i}, \\
a_{n}=\left\langle x p_{n-1}, p_{n-1}\right\rangle /\left\langle p_{n-1}, p_{n-1}\right\rangle \\
b_{n}=\left\langle x p_{n-1}, p_{n-2}\right\rangle /\left\langle p_{n-2}, p_{n-2}\right\rangle .
\end{gathered}
$$

(b) Let $w(x)=1-x$ and $a=0, b=1$. Find the Gaussian quadrature for the integral $\int_{0}^{1}(1-x) f(x) g(x) d x$, which has algebraic degree of accuracy there. Use the general theory by constructing the corresponding orthogonal polynomials.
4. Let $f \in C^{6}[-1,1]$.
(a) Construct the Hermite interpolating polynomial $p(x)$ on the interval $[-1,1]$ such that

$$
p\left(x_{i}\right)=f\left(x_{i}\right), p^{\prime}\left(x_{i}\right)=f^{\prime}\left(x_{i}\right) \text { for } x_{i}=-1,0,1
$$

(b) Give a formula for the interpolation error

$$
E(f)=p(x)-f(x) .
$$

(c) Show that the quadrature formula

$$
\int_{-1}^{1} f(t) d t \approx \frac{7}{15} f(-1)+\frac{16}{15} f(0)+\frac{7}{15} f(1)+\frac{1}{15} f^{\prime}(-1)-\frac{1}{15} f^{\prime}(1)
$$

is exact for all polynomials of degree ≤ 5.

