Graduate Preliminary Examination Numerical Analysis II Duration: 3 Hours

1. Newton's method iteration applied to the equation $f(x) = x^3 - x = 0$ takes the form

$$x_{n+1} = x_n - \frac{x_n^3 - x_n}{3x_n^2 - 1}, \quad , n = 0, 1, 2, \dots$$

- (a) Study the behavior of the iteration when $x_0 > 1/\sqrt{3}$ to conclude that the sequence $\{x_0, x_1, \ldots\}$ approaches the same root as long as you choose $x_0 > 1/\sqrt{3}$
- (b) Assume $-\alpha < x_0 < \alpha$. For what number α does the sequence always approach 0?
- (c) For an arbitrary f(x), suppose that $f'(x)f''(x) \neq 0$ in an interval [a, b], where f''(x) is continuous and f(a)f(b) < 0. Show that if $f(x_0)f''(x_0) > 0$, for $x_0 \in [a, b]$, then the sequence $\{x_0, x_1, \ldots\}$ genererated by Newton's method converges monotonically to a root $\alpha \in [a, b]$.
- 2. (a) Explain how to find weights w_i and nodes x_i such that the quadrature $\sum_{i=0}^{n} w_i f(x_i)$ give the exact solution to $\int_0^\infty e^{-x} f(x) dx$ whenever f is a polynomial of degree $\leq n$.
 - (b) Find the second-order Laguerre polynomial using Gram-Schmidt.
 - (c) By using part (b), find nodes x_0 and x_1 and weights w_0 and w_1 such that the quadrature $\sum_{i=0}^{n} w_i f(x_i)$ gives exact solution to $\int_0^\infty e^{-x} f(x) dx$ whenever f is a polynomial of degree ≤ 1 .
 - (d) let $I(f) = \int_{a}^{b} f(x)dx$ and $I_{n}(f) = \sum_{i=0}^{n} w_{i}f(x_{i})$. Prove that if I_{n} integrates to degree *n* exactly and w_{i} are all positive then the quadrature is convergent for any $f \in C([a, b])$, i.e. $\lim_{n \to \infty} I_{n}(f) = I(f)$.

- 3. There are three unrelated parts in this question.
 - (a) Write a quadratic spline interpolant for the data $(x, y) = \{(-1, 2), (0, 1), (0.5, 0), (1, 1), (2, 2), (2.5, 3)\}$
 - (b) Find a first order method for approximating f''(x) that uses the data f(x-h), f(x), f(x+3h). Find the error term.
 - (c) If we interpolate the function $f(x) = e^{x-1}$ with a polynomial p(x) of degree 12 using **thirteen** nodes $x_j \in [-1, 1]$, find an upper bound for |f(x) p(x)| on [-1, 1]?
- 4. (a) Write the Hermite interpolation polynomial to f(x) based on the values of f(a), f'(a), f(b).
 - (b) Based on the result of part (a), write an approximation of

$$\int_{a}^{b} f(x) \, dx$$