Graduate Preliminary Examination Numerical Analysis II Duration: 3 Hours

1. Find the value of x for which f(x) = 2 by using the following table

x	0	1	2	3
f(x)	0	1	4	9

- 2. (a) Interpolate the function $\ln(x)$ by a quadratic polynomial at x = 10, 11, 12.
 - (b) Estimate the error at x = 11.1 when approximating $\ln(x)$ by the interpolating polynomial found in part (a).
 - (c) How does the sign of the error depend on x?
- 3. Let $f(x) = 1 + \frac{1}{2x}$. Answer the following questions.
 - (a) Apply the fixed point iteration by taking the initial point $x_0 = 1$ to compute the points x_1 and x_2 .
 - (b) Explain analytically if the iteration converges or diverges. Give reason.
 - (c) Explain graphically whether the iteration converges or diverges. (Draw a graph to show how the iteration proceeds).
- 4. Given that the function f has continuous second derivative on the interval [0,1]. Prove that there exists a point $\xi \in (0,1)$ such that the relation

$$\int_0^1 x f(x) \, dx = \frac{1}{2} f(\frac{2}{3}) + \frac{1}{72} f''(\xi)$$

is satisfied.