Graduate Preliminary Examination Numerical Analysis II
 Duration: 3 Hours

1. The following integration formula is Gaussian quadrature type

$$
\int_{-1}^{1} f(x) d x=f\left(-\frac{1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)
$$

(a) Derive this formula.
(b) Determine a formula for the integration

$$
\int_{a}^{b} f(t) d t
$$

(c) By using part (a) and (b), evaluate

$$
\int_{0}^{\pi / 2} t d t
$$

2. Assume that f be a 3 times continuously differentiable function near a root α. Show that the iterative process

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}-\frac{\left[f\left(x_{n}\right)\right]^{2} f^{\prime \prime}\left(x_{n}\right)}{2\left[f^{\prime}\left(x_{n}\right)\right]^{3}}
$$

is a third order process for solving $f(x)=0$.
3. Estimate the multiple integral

$$
I=\int_{0}^{1} \int_{1}^{e^{x}}\left(x+\frac{1}{y}\right) d y d x
$$

numerically by using
(a) Trapezoidal rule in both x and y directions.
(b) Composite Trapezoidal rule in x direction and Trapezoidal rule in y direction.
4. By using Newton form of an interpolating polynomial show that
(a) If $p(x) \in \mathcal{P}_{n}$ (the set of all n -th degree polynomials) interpolates a function f at a set of $n+1$ distinct nodes $x_{0}, x_{1}, \ldots x_{n}$ and if t is a point different from the nodes, then

$$
f(t)-p(t)=f\left[x_{0}, x_{1}, \ldots, x_{n}, t\right] \prod_{j=0}^{n}\left(t-x_{j}\right) .
$$

(b) If $f \in C^{n}[a, b]$ and if $x_{0}, x_{1} \ldots, x_{n}$ are distinct points in $[a, b]$ then there exists a point $\eta \in(a, b)$ such that

$$
f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\frac{f^{(n)}(\eta)}{n!}
$$

(c) If f is a polynomial of degree k, then for $n>k$,

$$
f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=0 .
$$

