Graduate Preliminary Examination
 Numerical Analysis II
 Duration: 3 Hours

1. Determine all values of a, b, c, d, e and f for which the following function $S(x)$ is a cubic spline

$$
S(x)=\left\{\begin{array}{lr}
a x^{2}+b(x-1)^{3}, & x \in(-\infty, 1] \\
c x^{2}+d, & x \in[1,2] \\
e x^{2}+f(x-2)^{3}, & x \in[2, \infty)
\end{array}\right.
$$

2. (a) Derive a quadrature formula for

$$
\int_{-1}^{1} x^{2} f(x) \mathrm{d} x \approx \sum_{i=0}^{1} A_{i} f\left(x_{i}\right)
$$

which is exact for polynomials of degree ≤ 3.
(b) Give an upper bound for the error made in the formula found in part (a).
(c) Evaluate $\int_{0}^{2}(x-1)^{2} e^{x} \mathrm{~d} x$ by using the quadrature formula found in part (a).
3. (a) Use a suitable interpolating polynomial and its error term to derive the differentiation formula

$$
f^{\prime}\left(x_{1}\right)=\frac{f\left(x_{1}+h\right)-f\left(x_{1}-h\right)}{2 h}-\frac{h^{2}}{6} f^{\prime \prime \prime}(\xi), \quad \xi \in\left(x_{1}-h, x_{1}+h\right)
$$

(b) Let $f(x)=e^{2 x+1}$. Approximate $f^{\prime}(1.4)$ by using the numerical differentiation formula obtained in part(a) and the values $f(1.3), f(1.5)$, then approximate the error.
(c) The formula in part (a) can be written as

$$
f^{\prime}\left(x_{1}\right)=\frac{f\left(x_{1}+h\right)-f\left(x_{1}-h\right)}{2 h}+K_{1} h^{2}+O\left(h^{4}\right)
$$

where the constant $K_{1}=-\frac{f^{\prime \prime \prime}(\xi)}{6}$. Use extrapolation to derive an $O\left(h^{4}\right)$ formula for $f^{\prime}\left(x_{1}\right)$.
4. Given the polynomial $p(z)=z^{4}+2 z^{3}-3 z^{2}+2$.
(a) Locate the roots of $p(z)$ in the complex plane.
(b) Construct the synthetic division table for $p(z)$ for $z_{0}=2$; that is, write $p(z)$ as

$$
\begin{aligned}
& p(z)=q_{3}(z)(z-2)+r_{0}, \\
& q_{3}(z)=q_{2}(z)(z-2)+r_{1} \\
& q_{2}(z)=q_{1}(z)(z-2)+r_{2}, \\
& q_{1}(z)=q_{0}(z)(z-2)+r_{3} .
\end{aligned}
$$

(c) Write $p(z)$ in Taylor series expansion around $z_{0}=2$ using part (b).
(d) If $x_{0}=2$ is an initial estimate to one of the real zeros of $p(z)$, carry out one iteration in Newton's method to approximate the root x_{1} by using part (c).

