Graduate Preliminary Examination
 Numerical Analysis II
 Duration: 3 Hours

1. (a) Show that Newton's method for the equation $f(x)=0$ is quadratically convergent (assuming $f(x)$ is sufficiently smooth, and $f^{\prime}(x) \neq 0$ at the root)
(b) In case one can readily evaluate also $f^{\prime \prime}(x)$, the enhanced (cubically convergent) version

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}-\frac{1}{2} \frac{f\left(x_{n}\right)^{2} f^{\prime \prime}\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)^{3}}
$$

may be used. Derive this formula.
2. Given the approximation formula

$$
G(h)=\frac{3 f(x)-4 f(x-h)+f(x-2 h)}{2 h} .
$$

(a) Show that

$$
f^{\prime}(x)-G(h)=c_{1} h^{3}+c_{2} h^{4}
$$

and determine c_{1} and c_{2}.
(b) Find an approximation for $f^{\prime}(0.35)$ using the table below and $G(h)$ given in part (a).

$$
\begin{array}{c|ccccc}
\mathrm{x} & 0.25 & 0.3 & 0.35 & 0.4 & 0.45 \\
\hline f(x) & 0.1 & 0.3 & 0.5 & 0.55 & 0.65
\end{array}
$$

(c) Apply extrapolation to the formula $G(h)$ given in part (a) to drive an approximation to $f^{\prime}(x)$ of order $O\left(h^{4}\right)$.
3. Consider a 3 -node quadrature approximations of the form

$$
\int_{0}^{1} f(x) d x=a f(0)+b f(1 / 2)+c f(2)
$$

Find a, b and c by using the following three methods:
(a) Trapezoidal rule,
(b) Simpson's formula,
(c) Exact integration of the interpolating natural cubic spline.

