Graduate Preliminary Examination Ordinary Differential Equations (3 hours)

September 20, 2010

1. Let $x(t,t_0,x_0)$ and $z(t,ar{t}_0,ar{x}_0)$ denote, respectively, solutions of

$$x' = f(t, x), \qquad x(t_0) = x_0$$

and

$$z' = f(t, z) + g(t, z), \qquad z(\bar{t}_0) = \bar{x}_0$$

where

- (i) $f \in C(D)$, $|f(t,x)| \leq M$ for some M > 0, f is Lipschitz in x with Lipschitz contant L;
- (ii) $g \in C(D)$, $|g(t,x)| \le K$ for some K > 0.
- (a) Show that

$$|x(t)-z(t)| \le \left(|x_0-\bar{x}_0|+(M+K)|t_0-\bar{t}_0|+\frac{M}{L}\right)e^{L|t-t_0|}-\frac{K}{L}.$$

- (b) Use part (a) with $g(t,x) \equiv 0$ to prove that the solution $x(t) = x(t,t_0,x_0)$ is continuous in (t_0,x_0) for t in a compact subset of real numbers.
- 2. Consider the systems

$$x' = Ax \tag{1}$$

$$y' = Ay + f(t, y) \tag{2}$$

where A is an $n \times n$ constant matrix and f(t,y) is a continuous function defined on $R \times R^n$. Suppose that there exists a continuous function $\alpha(t)$ such that

$$||f(t,y)|| \le \alpha(t)||y||, \qquad \int_a^\infty \alpha(t) dt < \infty, \quad (a \in R).$$

Show that if all solutions of (1) are bounded, then so are all solutions of (2). What would you say if A were not a constant matrix?

3. Consider the equation

$$(\frac{1}{1+t}x')' + (1+\sin t)x = 0$$

- (a) Show that every solution of the equation has at least one zero in $[0, \pi]$.
- (b) Show that there is a solution having at least two zeros in $[0, \pi]$. Is it possible for any solution to have more than two zeros on $[0, \pi]$?
- 4. Let

$$A = \left[\begin{array}{cc} 0 & -a \\ a & 0 \end{array} \right].$$

(a) Find the fundamental matrix e^{At} of of the linear system

$$x' = Ax$$
.

- (b) Use part (a) to show that all solutions are periodic. What is the common period of the solutions?
- (c) Show that the zero solution is stable. Is it asymptotically stable?