PRELIMINARY EXAM PROBLEMS Differential Equations (ODE), 2004/2

1. Consider the following IVP

$$y' = y\cos(x^2 + y^2), \quad y(0) = 1.$$

where $y, x \in \mathbb{R}^1$.

- a) Applying the "existence-uniquenes" theorem, determine a *specific* interval on which a unique solution is sure to exist.
- b) Determine the *largest* possible interval (α, β) on which the solution is defined.
- c) Explain why the solution of the IVP is always positive.
- d) Is the solution strictly increasing over its interval of definition? Why? Why not?
- 2. a) Let y(t) be a solution of $y'' e^{-t}y = 0$. Show that y(t) can not vanish twice.
 - b) Prove that every solution of y'' + (1 + a(t))y = 0 has infinitely many zeros, if

$$\lim_{t \to \infty} a(t) = 0.$$

- 3. Suppose that all solutions of y'' + a(t)y = 0 are bounded. Show that if $\int_0^\infty |b(t)| dt < \infty$, then all solutions of y'' + (a(t) + b(t))y = 0 are also bounded.
- 4. Using Lyapunov function show that the zero solution of the system

$$x'_{1} = -2x_{1}x_{2}^{2} - x_{1}^{3},$$

$$x'_{2} = -x_{2} + x_{1}^{2}x_{2}$$
(1)

is uniform asymptotically stable.