PRELIMINARY EXAM PROBLEMS Differential Equations (ODE), 3 hours, 2005/2

1. Consider the IVP

$$
\begin{aligned}
& x_{1}^{\prime}=-\frac{1}{t} x_{2}+\sin t, \\
& x_{2}^{\prime}=\frac{1}{t} x_{1}+\cos t, \\
& x_{1}(1)=x_{2}(1)=0 .
\end{aligned}
$$

Show that the IVP has a unique solution defined on $(0, \infty)$.
2. Let $p(t)$ be continuous function defined on $[1, \infty)$ such that

$$
\int_{1}^{\infty}|p(t)-c| d t<\infty, c>0
$$

(a). Show that all solutions of

$$
\begin{equation*}
y^{\prime \prime}+p(t) y=0 \tag{1}
\end{equation*}
$$

are bounded on $[1, \infty)$. (Hint: rewrite the equation in the form $\left.y^{\prime \prime}+c y=(c-p(t)) y\right)$.
(b). What can you say about the stability of the zero solution?
(c). Show that all solutions of (1) need not to be bounded if $c=0$. (Hint: $p(t)=\frac{a}{t^{2}}$).
3. Let $A(t)$ be a continuous matrix for all $t \in R$. Let $P(t)$ be the matrix solution of

$$
X^{\prime}=A(t) X
$$

Show that $P(t) P^{-1}(s)=P(t-s)$ for all $t, s \in R$, if and only if $A(t)$ is a constant matrix.
4. Consider the following scalar equation

$$
\begin{equation*}
x^{\prime}=c(t) x, \tag{2}
\end{equation*}
$$

where function $c(t): R \rightarrow R$ is defined in the following way:

$$
c(t)= \begin{cases}t, & \text { if } \\ 1-t, & 0 \leq t \leq \frac{1}{2} \\ 1\end{cases}
$$

and $c(t)$ is $1-$ periodic.
(a). Prove that (2) does not have a nontrivial 1-periodic solution.
(b). Does the equation have a nontrivial solution with another period?

