## PRELIMINARY EXAM PROBLEMS Differential Equations (ODE), 3 hours, 2008/2

1. Consider the system

$$x' = -3x - 2y + \sin(t),$$
  

$$y' = 2x - 3y + \cos(t).$$
(1)

- (a) Evaluate the transition matrix X(t,s) of the associated homogeneous system. Show that  $\limsup_{t\to\infty} ||X(t,s)|| = \emptyset$ ;  $\mathcal{O}$
- (b) Find the general solution  $x(t, t_0, x_0)$  of the system;
- (c) Show that all solutions are bounded on  $[0, \infty)$  functions;
- (d) Show that there exists a unique solution bounded on R;
- (c) Prove that the bounded solution is  $2\pi$ -periodic function.
- (f) Prove that each solution of the system is uniformly asymptotically stable. Estimate  $|x(t,0,x_0,x_0^1)|, |x'(t,0,x_0,x_0^1)|, \text{ for } t\in [0,T], T<\infty, \text{ if } x(t)=x(t,0,x_0,x_0^1), x(0)=x_0, x'(0)=x_0^1, \text{ is a solution of equation } x''+\sin x=0. \text{ Consider } x_0=0.01, x_0^1=-0.02, T=10$

Hint: Use differentiability of solutions in initial value.

3. Assume that  $u(t) \ge 0, v(t) > 0$ , are continuous on  $[t_0 - T, t_0], t_0 \in R, T > 0$ , functions. Prove that the inequality

$$u(t) \le c + \int_t^{t_0} u(s)v(s)ds, t \le t_0$$

implies

$$u(t) \le c \mathrm{e}^{\int_t^{t_0} v(s) ds},$$

where  $c \geq 0$  is constant.

4. Consider the following Abel's equation

$$y' = \sin(t) - y^3. \tag{2}$$

where  $t,y \in R$ . Prove that as t increasing, each solution of (2) is attracted into the strip  $|y| < 1 + \epsilon$ , where  $\epsilon$  is a fixed positive number, in a uniformly bounded time interval.