METU - Department of Mathematics
 Graduate Preliminary Exam

Partial Differential Equations

Duration : 180 min.
Fall 2008

1. Solve the following initial value problem.

$$
u_{x}^{2}-3 u_{y}^{2}=u, \quad u(x, 0)=x^{2}
$$

2. Let D be the region $(0,1) \times(0,1) \subset \mathbb{R}^{2}$ and let $u(x, y) \in C^{2}(D) \cap C^{0}(\bar{D})$ be a non-constant function. Set $M=\max (u)$ in \bar{D}.
a) Show that if $u(x, y)$ solves the equation

$$
\nabla^{2} u(x, y)+a(x, y) u_{x}+b(x, y) u_{y}=F(x, y) \text { in } D
$$

and if $F(x, y)>0$ in D, then $u(x, y)<M$ for all $(x, y) \in D$.
b) True or false ? The same conclusion holds if $u(x, y)$ solves the equation $u_{x y}=0$ in D. (Prove the statement or give a counter example).
3. Consider the following Dirichlet problem.

$$
\begin{gathered}
\nabla^{2} u=0 \text { in } \Omega=\{(r, \theta): r>1,0<\theta<\pi / 2\} \\
u(r, 0)=u(r, \pi / 2)=0 \text { for } r \geq 1 \\
u(1, \theta)=\sin (2 \theta) \text { for } 0<\theta<\pi / 2
\end{gathered}
$$

a) Find the bounded solution of this problem.
b) Find an unbounded solution, if there is any.
c) Write a Neumann problem in Ω for which the function $u(r, \theta)$ of part (a) is a solution.
4. Let $G(x, t)$ be the heat kernel $\quad G(x, t)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}}$.
a) Show that $u(x, t)=2 \int_{0}^{t} G\left(x, t-t^{\prime}\right) f\left(t^{\prime}\right) d t^{\prime}$ satisfies

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t} \text { in }\{(x, t): x>0, t>0\} \\
u(x, 0)=0, x>0
\end{gathered}
$$

Hint : Do not verify the uniform convergence of the integral, but indicate when you use this property.
b) Verify that $-\left.\frac{\partial u}{\partial x}\right|_{x=0}=f(t), t>0$.

Hint : In the integral, first make the change of variable given by $s^{2}=\frac{x^{2}}{4\left(t-t^{\prime}\right)}$.

