M.E.T.U
 Department of Mathematics
 Preliminary Exam - Sep. 2011
 Partial Differential Equations

Duration : 180 min.

Each question is 25 pt.
NOTATION :
∇, Δ denote the gradient and the Laplace operators, respectively.

1. a. For a linear second order differential equation

$$
a u_{x x}+2 b u_{x y}+c u_{y y}+d u_{x}+e u_{y}+f u=0
$$

define the elliptic, parabolic and hyperbolic equation at point (x, y).

Consider the equation $u_{y y}-y u_{x x}=0$.
b. Determine where the equation is elliptic, parabolic, hyperbolic.
c) Determine the characteristics in the region $\mathcal{H}=\{(x, y): y>0\}$.
2. a. Give the definition of Dirichlet and Neumann problems for Laplace equation in domain Ω.
b. Using the energy identity

$$
\int_{\Omega}\left(\sum u_{x_{i}}^{2}\right) d x+\int_{\Omega} u \Delta u d x=\int_{\partial \Omega} u \frac{d u}{d n} d S .
$$

prove that if $u \in C^{2}(\bar{\Omega})$ is a solution of a Dirichlet problem in Ω, then it is unique.
c.) Explain if there exists a solution for each of the following problems in the unit disk $\Omega=\{(r, \theta): r<1\} \in \mathrm{R}^{2}$.

- $\Delta(u)=0,\left.u\right|_{\partial \Omega}=\cos (\theta)$.
- $\Delta(u)=0,\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=\cos (\theta)$.
(Hint : For $f, g \in C^{2}(\Omega)$ one has the Stokes' formula

$$
\left.\int_{\Omega}(\nabla f . \nabla g) d A+\int_{\Omega}(f \Delta g) d A=\int_{\partial \Omega}\left(f \frac{\partial g}{\partial n}\right) d l .\right)
$$

3. For the equation

$$
\Delta u(x)+u(x)=0 \quad x \in \mathbb{R}^{3}
$$

find the spherically symmetric solution. That is a solution of the form $u=f(r)$, where $r=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}$.
(Hint: in the resulting ODE for f introduce new variable $y(r)=r f(r)$).
4. For $T \geq 0$ let $Q_{T}=\{(x, t): 0<x<L, 0<t \leq T\}$ and $B_{T}=\bar{Q}_{T} \backslash Q_{T}$ (\bar{Q}_{T} denotes the closure of Q_{T}). Suppose that $u(x, t)$ is continuous on \bar{Q}_{T} and satisfies

$$
u_{t}-a(x, t) u_{x x}-b(x, t) u_{x}-c(x, t) u<0 \quad \text { on } \quad Q_{T},
$$

where $a(x, t) \geq 0, c(x, t) \leq 0$ in Q_{T}, and

$$
u(x, t) \leq 0 \quad \text { on } \quad B_{T} .
$$

Show that $u(x, t) \leq 0$ on \bar{Q}_{T}.
(Hint: show that $u(x, t)$ cannot have positive local maximum in Q_{T}.)

