M.E.T.U

Department of Mathematics Preliminary Exam - Sep. 2011 Partial Differential Equations

Duration: 180 min.

Each question is 25 pt.

NOTATION :

 ∇, Δ denote the gradient and the Laplace operators, respectively.

1. a. For a linear second order differential equation

$$au_{xx} + 2bu_{xy} + cu_{yy} + du_x + eu_y + fu = 0$$

define the elliptic, parabolic and hyperbolic equation at point (x, y).

Consider the equation $u_{yy} - yu_{xx} = 0$.

- **b.** Determine where the equation is elliptic, parabolic, hyperbolic.
- c) Determine the characteristics in the region $\mathcal{H} = \{(x, y) : y > 0\}.$
- 2. **a.** Give the definition of Dirichlet and Neumann problems for Laplace equation in domain Ω .
 - **b.** Using the energy identity

$$\int_{\Omega} \left(\sum u_{x_i}^2 \right) dx + \int_{\Omega} u \Delta u dx = \int_{\partial \Omega} u \frac{du}{dn} dS.$$

prove that if $u \in C^2(\overline{\Omega})$ is a solution of a Dirichlet problem in Ω , then it is unique.

c.) Explain if there exists a solution for each of the following problems in the unit disk $\Omega = \{(r, \theta) : r < 1\} \in \mathbb{R}^2$.

• $\Delta(u) = 0, \ u|_{\partial\Omega} = \cos(\theta).$

•
$$\Delta(u) = 0, \ \frac{\partial u}{\partial n}|_{\partial\Omega} = \cos(\theta).$$

(Hint : For $f, g \in C^2(\Omega)$ one has the Stokes' formula

$$\int_{\Omega} (\nabla f \cdot \nabla g) dA + \int_{\Omega} (f \Delta g) dA = \int_{\partial \Omega} (f \frac{\partial g}{\partial n}) dl.)$$

3. For the equation

$$\Delta u(x) + u(x) = 0 \quad x \in \mathbb{R}^3$$

find the spherically symmetric solution. That is a solution of the form u = f(r), where $r = \sqrt{x_1^2 + x_2^2 + x_3^2}$.

(Hint: in the resulting ODE for f introduce new variable y(r) = rf(r)).

4. For $T \ge 0$ let $Q_T = \{(x,t) : 0 < x < L, 0 < t \le T\}$ and $B_T = \bar{Q}_T \setminus Q_T$ $(\bar{Q}_T \text{ denotes the closure of } Q_T)$. Suppose that u(x,t) is continuous on \bar{Q}_T and satisfies

$$u_t - a(x,t)u_{xx} - b(x,t)u_x - c(x,t)u < 0$$
 on Q_T ,

where $a(x,t) \ge 0$, $c(x,t) \le 0$ in Q_T , and

$$u(x,t) \leq 0$$
 on B_T .

Show that $u(x,t) \leq 0$ on \bar{Q}_T .

(Hint: show that u(x,t) cannot have positive local maximum in Q_T .)