PRELIMINARY EXAM - Sep. 2012

Partial Differential Equations

Duration: 3 hr.

Q.1	Q.2	Q.3	Q.4	Total

Each question is 25 pt.

1. Consider the PDE

$$x^4 (\frac{\partial z}{\partial x})^2 - yz \frac{\partial z}{\partial y} - z^2 = 0 \ \text{ in } \Omega = \{(x,y,z) \in \mathbf{R}^3 : x > 0, \ y > 0, \ z > 0\} \ \ (*).$$

a) Transform the given PDE by using the change of variables

$$X = \frac{1}{x}, \ Y = \frac{1}{y}, \ Z = \ln(z).$$

- b) Solve the PDE you obtained in (a) to get the complete integral of the original PDE (*).
- c) Find all singular solutions, if any, of (*).
- 2. Consider the problem

$$u_{xx} - u_t = tu$$
 for $(x, t) \in \mathbb{R} \times (0, \infty)$
$$u(x, 0) = \phi(x).$$

a) Determine the ODE satisfied by the function f(t) if u(x,t) = f(t)v(x,t) where v(x,t) is the solution of the problem

$$v_{xx} - v_t = 0$$
 for $(x, t) \in \mathbb{R} \times (0, \infty)$
$$v(x, 0) = \phi(x).$$

b) Determine f(t).

c) Let $u_1(x,t)$, $u_2(x,t)$ be the solutions of the given problem corresponding to the boundary conditions $\phi_1(x)$, $\phi_2(x)$ respectively. Show that if

$$\sup_{\mathbb{R}} |\phi_1(x) - \phi_2(x)| \le 1$$

then $|u_1(x,t) - u_2(x,t)| \le e^{-t^2/2}$ for all $(x,t) \in \mathbb{R} \times (0,\infty)$.

3. Consider the equation

$$U_{xy} + 2y \, U_{xx} + U_x = 0 \ .$$

- (A) Determine the type of this equation.
- (B) Introduce a suitable system of coordinate in which the principal part of this equation assumes a canonical form.
- (C) Find the general solution of the above equation.
- (D) Find the solution of the above equation which satisfies

$$U_x(x,0) = x^2$$
 and $U(0,y) = 0$.

(Hint: Notice that M = x - H(y) is a solution of the equation

$$H'(y) M_x + M_y = 0).$$

4. Let $\Omega \subset \mathbb{R}^2$ be an open connected and bounded region and let $u : \overline{\Omega} \to \mathbb{R}$ be a continuous function which is C^2 on Ω . Show that if u satisfies

$$abla^2 u = u^3 \text{ in } \Omega$$

$$u|_{\partial\Omega}=0$$

then $u \equiv 0$ in Ω .