PRELIMINARY EXAM PROBLEMS Differential Equations (PDE), 2004/2

1. Solve the Cauchy problem

$$
u_{y}=u_{x}^{3}, \quad u(x, 0)=2 x^{3 / 2} .
$$

2. (a) Verify, formally, that the PDE of the form

$$
\left\{\frac{\partial}{\partial x}\left[F(x, y) \frac{\partial}{\partial x}\right]+\frac{\partial}{\partial y}\left[G(x, y) \frac{\partial}{\partial y}\right]\right\} \Phi(x, y)=0
$$

has a solution of the type $\Phi(x, y)=X(x) Y(y)$, if $F(x, y)$ and $G(x, y)$ are "separable" in the variables, i.e. $F(x, y)=p(x) f(y), G(x, y)=q(x) w(y)$. Then write down the system of two ODE's for $X(x)$ and $Y(y)$.
(b) If $\Phi(0, y)=\Phi(1, y)=0$ for all y, verify that the x-dependence of the problem in Part (a) is equivalent to the system

$$
\frac{d}{d x}\left[p(x) \frac{d X}{d x}\right]+\lambda q(x) X=0, \quad X(0)=X(1)=0
$$

where $p(x)$ and $q(x)$ are real and positive with continuous derivatives in the interval $[0,1]$ and λ is constant.
3. Use Duhamel's principle to solve the IVP

$$
\begin{gathered}
u_{t t}-u_{x_{1} x_{1}}-u_{x_{2} x_{2}}-u_{x_{3} x_{3}}=x_{1}+x_{2}+t \\
u\left(x_{1}, x_{2}, x_{3}, 0\right)=u_{t}\left(x_{1}, x_{2}, x_{3}, 0\right)=0
\end{gathered}
$$

4. Let u be a solution of IVP

$$
\begin{aligned}
& u_{t}-k u_{x x}=0, \quad x \in R, \quad t>0 \\
& u(x, 0)=f(x)
\end{aligned}
$$

where $f(x)$ is continuous on R. Assume that $u(x, t)$ tends to zero uniformly for $t>0$ as $x \rightarrow \pm \infty$. Show that $|u(x, t)| \leq M, x \in R, t>0$, if $|f(x)| \leq M, x \in R$.

