Partial Differential Equations

Problem 1. For the given equation

$$
x y z_{x}+x z z_{y}=y x
$$

find a curve s.t. there exists infinitely many solutions passing through this curve.

Problem 2. Using Green's first identity

$$
\int_{\partial D} v \frac{\partial u}{\partial n} d S=\iint_{D} \nabla v \cdot \nabla u d x d y+\iint_{D} v \Delta u d x d y
$$

show that the Dirichlet problem

$$
\begin{array}{ll}
\Delta u+k u=q(x, y), & \text { in } \quad D \\
u=f(x, y) & \text { on } \quad \partial D
\end{array}
$$

has a unique solution if $k<0$.
Problem 3. For equation

$$
\Delta u(x)+u(x)=0 \quad x \in \mathbb{R}^{3}
$$

find the spherically symmetric solution that is solution of the form $u=f(r)$, where $r=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}$.
Problem 4. Let Ω is be a bounded domain in \mathbb{R}^{2}. Suppose that $u \in C^{2}(\Omega)$ satisfies

$$
-\Delta u+\nabla u+e^{x y} u>0 \quad \text { on } \quad \Omega,
$$

and u assumes a minimum value on Ω at some interior point $x_{0} \in \Omega$. Prove that $u\left(x_{0}\right) \geq 0$.

