GRADUATE PRELIMINARY EXAMINATION ANALYSIS I (REAL ANALYSIS) Fall 2005 September 12th, 2005

Duration: 3 hours

- **1.** Let (X, S, μ) be a measure space, T be a metric space. Let $f : X \times T \to \mathbf{R}$ be a function. Assume that $f(\cdot, t)$ is measurable for each $t \in T$ and $f(x, \cdot)$ is continuous for each $x \in X$. Prove that if there exists an integrable function g such that for each $t \in T$, $|f(x,t)| \leq g(x)$ for a.a.x, then $F : T \to \mathbf{R}$, $F(t) = \int f(x,t)d\mu(x)$ is continuous.
- **2.** Let \mathcal{G} be a set of half-open intervals in **R**. Prove that $\bigcup_{G \in \mathcal{G}} G$ is Lebesgue measurable.
- **3.** a) Let $f_n = \sin n^2 x \in L_p[0, 1]$, where $1 \le p < \infty$. Show that $f_n \to 0$ weakly, but $f_n \ne 0$ in measure.

b) Let $g_n = n^2 \chi_{[0,\frac{1}{n}]} \in L_p[0,1]$, where $1 \leq p < \infty$. Show that $g_n \to 0$ in measure, but $g_n \neq 0$ weakly.

c) Let A_n be a measurable subset of [0, 1] for each $n, \chi_{A_n} \in L_1$, and $\chi_{A_n} \to f$ weakly in L_1 . Show that f is not necessarily a characteristic function of some measurable set.

4. Let $f : \mathbf{R} \to \mathbf{R}$. If $f \in L_1(m) \cap L_2(m)$ where *m* denotes the Lebesgue measure, prove that

a)
$$f \in L_p(m) \quad \forall 1 \le p \le 2$$

b) $\lim_{p \to 1^+} ||f||_p = ||f||_1.$