M E T U Department of Mathematics

(1) ($10+15$ points) Let \mathbf{m} denote the Lebesgue measure on \mathbb{R}.
a) Let $E \subseteq \mathbb{R}$ be non-Lebesgue measurable. Prove that $\mathbf{m}(\bar{E})>0$ where \bar{E} denotes the closure of E.
b) Let $A \subseteq[0,1]$ be Lebesgue measurable and $\mathbf{m}(A)=c>0$. Prove that for every $0<\alpha<c$ there exists a closed set $B_{\alpha} \subseteq A$ such that $\mathbf{m}\left(B_{\alpha}\right)=\alpha$.
(Hint. First argue that the map $f:[0,1] \rightarrow[0,1]$ given by $f(x)=\mathbf{m}(K \cap[0, x])$ is continuous for every measurable $K \subseteq[0,1]$. Then try to use this fact together with approximation theorems regarding Lebesgue measurable sets.)
(2) ($10+15+10+10$ points) a) State Lebesgue's dominated convergence theorem.

In the remaining parts of this question, you will consider the measure space ($\mathbb{N}, \mathcal{P}(\mathbb{N}), \nu)$ with the measure ν given by

$$
\nu(S)=\sum_{n \in S} \frac{1}{2^{n}}
$$

b) Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be a bounded function. Prove that f is integrable and

$$
\int_{\mathbb{N}} f d \nu=\sum_{k=0}^{\infty} \frac{f(k)}{2^{k}}
$$

(Hint. Set $f_{n}(x)=f(x) \cdot \chi_{\{0,1,2, \ldots n\}}(x)$. Observe that $f_{n} \longrightarrow f$ pointwise. Then apply an appropriate theorem to get the result.)
c) Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be a function and $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of functions from \mathbb{N} to \mathbb{R}. Show that if $f_{n} \rightarrow f$ in measure, then $f_{n} \rightarrow f$ pointwise.
d) Let $g(x, k)=x^{k}$. Compute the integral

$$
\int_{[1,3 / 2] \times \mathbb{N}} g(x, k) d(\mathbf{m} \times \nu)
$$

in the product measure space $(\mathbb{R} \times \mathbb{N}, \mathcal{B}(\mathbb{R}) \otimes \mathcal{P}(\mathbb{N}), \mathbf{m} \times \nu)$ where $\mathcal{B}(\mathbb{R})$ is the Borel σ algebra of \mathbb{R} and \mathbf{m} is the Lebesgue measure. Explain each step of your computation by referring to the relevant theorems.
(3) ($10+10+10$ points) Let μ be the measure defined on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ given by

$$
\mu(E)= \begin{cases}+\infty & \text { if } E \text { is uncountable } \\ 0 & \text { if } E \text { is countable }\end{cases}
$$

and let \mathbf{m} denote the usual Lebesgue measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
a) Show that $\mathbf{m} \ll \mu$, that is, \mathbf{m} is absolutely continuous with respect to μ.
b) Show that there exists no Borel measurable function $f: \mathbb{R} \rightarrow[0,+\infty)$ such that

$$
\mathbf{m}(E)=\int_{E} f d \mu
$$

c) Explain why (a) and (b) together do not contradict the Radon-Nikodym theorem.

