Graduate Preliminary Examination Real Analysis Duration: 3 hours

- 1. Let (X,\mathcal{M},μ) be a measure space and $f\in L_1(\mu)$ with f(x)>0 a.e. Prove that if A is a measurable set such that $\int_A f d\mu=0$, then $\mu(A)=0$,
- **2.** Let (X, \mathcal{M}, μ) be a measure space and (a,b) be a finite, non-empty interval in \mathbb{R} . Let $f: X \times (a,b) \to \mathbb{R}$ satisfy
 - a) $F(t) = \int f(x,t)dx$ is defined $\forall t \in (a,b)$
 - b) $\frac{\partial f}{\partial t}$ is defined everywhere in $X \times (a, b)$
- c) There is an integrable $g:X\to [0,\infty)$ such that $|\frac{\partial f}{\partial t}(x,t)|\le g(x)$ $\forall x\in X,\ t\in (a,b).$

Prove that both F'(t) and $\int \frac{\partial f}{\partial t}(x,t)dx$ exist $\forall t \in (a,b)$ and are equal.

- 3. Let $0< p< q<\infty$ and (X,\mathcal{M},μ) be a measure space. Prove that a) $L^p\not\subset L^q\Leftrightarrow X$ contains sets of arbitrarily small positive measure, but
- b) $\ell_p \subsetneq \ell_q$.

4.

- a) State the Lebesgue-Radon-Nikodym Theorem for signed measures.
- b) For j=1,2 let μ_j, ν_j be σ -finite measures on (X,\mathcal{M}_j) s.t. $\nu_j << \mu_j$ (ν_j is absolutely continuous with respect to μ_j). Prove that $\nu_1 \times \nu_2 << \mu_1 \times \mu_2$ and $\frac{d(\nu_1 \times \nu_2)}{d(\mu_1 \times \mu_2)}(x_1,x_2) = \frac{d\nu_1}{d\mu_1}(x_1) \cdot \frac{\partial \nu_2}{\partial \mu_2}(x_2)$.