M.E.T.U
 Department of Mathematics
 Preliminary Exam - Feb. 2011

 REAL ANALYSIS

 REAL ANALYSIS}

1. a) Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on a measure space (X, S, μ) such that $\left\{f_{n}(x)\right\}$ is a bounded sequence for each $x \in X$. Show that the set

$$
E=\left\{x \in X: \lim f_{n}(x) \text { exists }\right\}
$$

is a measurable set.
b) Let (X, S, μ) be a measure space. Assume that $f: X \rightarrow \mathbb{R}$ is a measurable function and $g: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function. Show that the composition function $g o f$ is a measurable function.
2. a) Let $\left(X, \sum, \mu\right),(Y, \Lambda, \nu)$ be measure spaces and \mathcal{A} be algebra of subsets of $X \times Y$ generated by rectangles $A \times B, A \in \sum, B \in \Lambda$. By using of the Monotone Convergence Theorem show that the following function

$$
\mu \times \nu: \mathcal{A} \rightarrow \overline{\mathbb{R}}_{+} \text {defined by } \mu \times \nu(A \times B):=\mu(A) \cdot \nu(B)
$$

is a pre-measure.
b) Let $A=\left(\left(a_{i j}\right)\right)_{i j \in \mathbb{N}}$ be an infinite matrix of real numbers. Suppose $\lim _{i \rightarrow \infty} a_{i j}=a_{j} \in \mathbb{R}$ and $\sup _{i}\left|a_{i j}\right|=b_{j}$ with $\sum_{j=1}^{\infty} b_{j}<\infty$. By application of the Dominated Convergence Theorem show that $\lim _{i \rightarrow \infty} \sum_{j=1}^{\infty}\left|a_{i j}-a_{j}\right|=0$
3. a) Formulate Fubini's theorem.
b) Show that if $f(x, y)=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$, with $f(0,0)=0$, then

$$
\int_{0}^{1}\left[\int_{0}^{1} f(x, y) d x\right] d y=-\frac{\pi}{4}, \quad \int_{0}^{1}\left[\int_{0}^{1} f(x, y) d y\right] d x=\frac{\pi}{4}
$$

c) Can f above be integrable on $[0,1] \times[0,1]$? Explain.
4. Let $a \in \mathbb{R}$ and $K=\left\{f \in C^{2}[01]: f(0)=f(1)=0, f^{\prime}(0)=a\right\}$.

Find $\min _{f \in k} \int_{0}^{1}\left(f^{\prime \prime}(x)\right)^{2} d x$ and a function $f \in K$ on which the minimum is attained.
[Hint: apply Cauchy-Schwartz inequality to functions $\varphi(x)=f^{\prime \prime}(x), \psi(x)=1-x$]

