M.E.T.U

Department of Mathematics

Preliminary Exam - Feb. 2011

REAL ANALYSIS

1. a) Let $\{f_n\}$ be a sequence of measurable functions on a measure space (X, S, μ) such that $\{f_n(x)\}$ is a bounded sequence for each $x \in X$. Show that the set

$$E = \{x \in X : \lim f_n(x) exists\}$$

is a measurable set.

b) Let (X, S, μ) be a measure space. Assume that $f : X \to \mathbb{R}$ is a measurable function and $g : \mathbb{R} \to \mathbb{R}$ is a continuous function. Show that the composition function gof is a measurable function.

2. a) Let (X, \sum, μ) , (Y, Λ, ν) be measure spaces and \mathcal{A} be algebra of subsets of $X \times Y$ generated by rectangles $A \times B$, $A \in \sum, B \in \Lambda$. By using of the Monotone Convergence Theorem show that the following function

$$\mu \times \nu : \mathcal{A} \to \mathbb{R}_+$$
 defined by $\mu \times \nu(A \times B) := \mu(A) \cdot \nu(B)$

is a pre-measure.

b) Let $A = ((a_{ij}))_{ij \in \mathbb{N}}$ be an infinite matrix of real numbers. Suppose $\lim_{i \to \infty} a_{ij} = a_j \in \mathbb{R}$ and $\sup_i |a_{ij}| = b_j$ with $\sum_{j=1}^{\infty} b_j < \infty$. By application of the Dominated Convergence Theorem show that $\lim_{i \to \infty} \sum_{j=1}^{\infty} |a_{ij} - a_j| = 0$

3. a) Formulate Fubini's theorem.

b) Show that if $f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$, with f(0,0) = 0, then $\int_0^1 [\int_0^1 f(x,y)dx]dy = -\frac{\pi}{4}, \quad \int_0^1 [\int_0^1 f(x,y)dy]dx = \frac{\pi}{4}$

c) Can f above be integrable on $[0,1] \times [0,1]$? Explain.

4. Let $a \in \mathbb{R}$ and $K = \{f \in C^2[0 \ 1] : f(0) = f(1) = 0, f'(0) = a\}$. Find $\min_{f \in k} \int_0^1 (f''(x))^2 dx$ and a function $f \in K$ on which the minimum is attained. [Hint: apply Cauchy-Schwartz inequality to functions $\varphi(x) = f''(x), \psi(x) = 1 - x$]