1. (25 pts) Prove that the set
\[E = \{ x \in [0, 1] : \forall q \in \mathbb{N}, \exists p \in \mathbb{N} \text{s.t} \ x - \frac{p}{q} \leq \frac{1}{q^2} \} \]
is Lebesgue measurable and its Lebesgue measure is 0.

2. (10+10+5 pts) Let \(m \) be the Lebesgue measure on \([0, 1]\), and \(\mu \) is the counting measure on \([0, 1]\).
 (a) Is \(m \) absolutely continuous with respect to \(\mu \)?
 (b) Does the Radon-Nikodym derivative \(\frac{dm}{d\mu} \) exist?
 (c) Does your result in part (b) contradict to Radon-Nikodym Theorem?

3. (25pts) Let \(f \in L^1(\mathbb{R}) \) and \(g \in L^1(\mathbb{R}) \). Show that \(\int_{\mathbb{R}} |f(x - y)g(y)|dy < \infty \) for a.e \(x \).

4. (25pts) Show that if \(\{f_n\} \in L^+ \), \(f_n \) decreases pointwise to \(f \) and \(\int f_k < \infty \) for some \(k \) then \(\int f = \lim \int f_n \).