Real Analysis Preliminary Exam Feb 2024

1. (25 pts) Prove that the set

$$E = \{x \in [0,1] : \forall q \in \mathbb{N}, \exists p \in \mathbb{N} \ s.t \ \left| x - \frac{p}{q} \right| \le \frac{1}{q^2} \}$$

is Lebesgue measurable and its Lebesque measure is 0.

- 2. (10+10+5 pts) Let *m* be the Lebesgue measure on [0, 1], and μ is the counting measure on [0, 1].
 - (a) Is m absolutely continuous with respect to μ ?
 - (b) Does the Radon-Nikodym derivative $dm/d\mu$ exist?
 - (c) Does your result in part (b) contradict to Radon-Nikodym Theorem?
- 3. (25pts) Let $f \in L^1(\mathbb{R})$ and $g \in L^1(\mathbb{R})$. Show that $\int_{\mathbb{R}} |f(x-y)g(y)| dy < \infty$ for a.e. x.
- 4. (25pts) Show that if $\{f_n\} \in L^+$, f_n decreases pointwise to f and $\int f_k < \infty$ for some k then $\int f = \lim \int f_n$.